

Inter-Networking

Dependence of the contract of the con

Packet format • Packet contains four main fields: • Marker (128bits) – used for authentication • Length (16bits) • Type (8bits) – BGP message type • Message body

©Mikrotik 2012

BGP message types

- . Four message types:
 - Open First message sent after TCP connection establishment, contains capability list. Confirmed by keepalive.
 - Keepalive does not contain data, sent to keep hold timer from expiring
 - Update actual route updates. Contains:
 NLRI

 - Path attributes
 - Notification sent when error condition occurs, contains error code and sub-code

©Mikrotik 2012

BGP Lab II

- . Add R3 to the same AS as R1
- . Add R4 to the same AS as R2
- . Make BGP peer between R4 and R3
- . Set up OSPF between routers in the same AS
- . Set OSPF to distribute connected routes
- . Announce both local networks from AS

©Mikrotik 2012

	R1] /ip route> pri			
	X - disabled, A -			
	nect, S - static,			mme,
# #	ckhole, U - unread DST-ADDRESS		GATEWAY D	TOWANCE
	0.0.0.0/0	FREF-SRC	10.20.0.1	
	10.20.0.0/24	10 20 0 11		20
	192.168.1.0/30			ő
	192.168.1.8/30	192.100.1.1	192.168.1.2	
	192.168.11.0/24	192.168.11.0	local	
5 Db	192.168.11.0/24		192.168.1.2	200
6 ADb	192.168.12.0/24		192.168.1.10	200
7 Db	192.168.12.0/24		10.20.0.12	20
8 ADo	192.168.13.0/24		192.168.1.2	110
9 Db	192.168.13.0/24		192.168.1.2	200
10 ADb	192.168.14.0/24		192.168.1.10	200
11 Db	192.168.14.0/24		10.20.0.12	20

BGP Lab IV

Lets look at R3. If set up properly traceroutes to network x2 should go over R4 and traceroutes to x4 should go over AP

[admin@R3] /ip address> /tool src-address=192.168.13.1		192.	168.12	.1 \	
# ADDRESS 1 192.168.1.6 2 192.168.12.1	RT1 4ms 3ms		RT3 4ms 4ms	STATUS	
[admin@R3] /ip address> /tool src-address=192.168.13.1		192.	168.14	.1 \	
<pre># ADDRESS 1 192.168.1.1 2 10.20.0.12 3 192.168.14.1</pre>	RT1 2ms 3ms 6ms	2ms 4ms	RT3 2ms 4ms 6ms	STATUS	
©Mikrotik 2012					4

Best path selection

- Next-hop validation
- . Highest WEIGHT (default 0)
- · Highest LOCAL-PREF (default 100)
- Shortest AS-PATH
- · Locally originated path (aggregate, BGP network)
- . Lowest origin type (IGP,EGP,Incomplete)
- . Lowest MED (default 0)
- Prefer eBGP over iBGP
- · Prefer the route with lowest router ID or ORIGINATOR_ID
- Shortest route reflection cluster (default 0)
- . Prefer the path that comes from the lowest neighbor address $_{\rm 45}$

MPLS Basics

Technology used to forward packets, based on short labels

Initial goal: more efficient forwarding than IP routing (similar to ATM switching)

.Serves as foundation for some "Advanced Services":

- . Layer3 VPNs
- Any Transport over MPLS (AtoM), Layer2 VPNs

- MPLS Traffic Engineering
- . Guaranteed bandwidth services

Distribution Modes

- Downstream-on-Demand (DoD) each LSR requests its next-hop label binding. (Not yet implemented)
- Unsolicited Downstream (UD) LSR distributes a binding all adjacent LSRs even if LSRs are requesting a label.

©Mikrotik 2012

85

Well known numbers 1. DP Hello messages – UDP port 646 1. DP transport session establishment – TCP port 646 1. Hellos are sent to "all routers in this subnet" multicast address (224.0.2)

92

Penultimate Hop Popping **Explicit NULL** . Router is egress point for network that is . If configured, penultimate LSR forwards packet directly connected to it, next hop for traffic is not with NULL label, instead of popping stack. MPLS router . Useful to preserve QoS . Advertised with "implicit null" label . Not required if stack contains at least two labels · Penultimate hop popping ensures that routers (inner label can still carry QoS value) do not have to do unnecessary label lookup . Implicit NULL is used by default when it is known in advance that router will have to route packet ©Mikrotik 2012 ©Mikrotik 2012 91

LDP based VPLS

- . Also called L2VPN or EoMPLS
- . Glues together individual LANs across MPLS
- Uses LDP to negotiate VPLS tunnels
- Pseudowire demultiplexor field (PW label) is used to identify VPLS tunnel
- Pseudowire has MAC learning, flooding and forwarding functions

©Mikrotik 2012

111

113

Configuring VPLS Add VPLS tunnel termination points: /interface vpls add remote-peer=x.x.x.x vpls-id=x:x Dynamic targeted LDP neighbor is added VPLS tunnel ID must be unique for every VPLS Related VPLS tunnel information can be viewed by /interface vpls monitor command Bridge VPLS interface with local one to provide transparent connectivity

©Mikrotik 2012

©Mikrotik 2012

<pre>[admin@R4] /mpls ldp neighbor> print Flags: X - disabled, D - dynamic, 0 - operationa</pre>	l T = sending=
<pre>targeted-hello, V - vpls # TRANSPORT LOCAL-TRANSPORT PEER SEND-TA 0 DOTV 10.255.0.3 10.255.0.4 10.255.0.3:0 no</pre>	RGETED ADDRESSES
1 DOTV 10.255.0.2 10.255.0.4 10.255.0.2:0 no 10.255.0.2	10.20.0.12
2 DOTV 10.255.0.1 10.255.0.4 10.255.0.1:0 yes	10.20.0.11 10.255.0.1
<pre>[admin@R4] /interface vpls> monitor 0 remote-label: 40 local-label: 28 remote-status: transport: 10.255.0.1/32 transport-nexthop: 192.168.1.9 imposed-labels: 22,40</pre>	
©Mikrotik 2012	119

©Mikrotik 2012

©Mikrotik 2012

125

BGP Based VPLS configuration BGP based VPLS Lab . Configure VPN bridge . Choose which one of routers will be Route . Configure BGP signaled VPLS interface reflector (for example R1) /interface vpls bgp-vpls Set BGP peering only between RR add bridge=<bridge> bridge=horizon=1 site=id=1 \ route=distinguisher=1:1 import=route=targer=1:1 \ . Replace all statically created VPLS with BGP export-route-target=1:1 VPLS . Dynamic VPLS tunnel gets created and added . Set import/export route targets the same as to bridge ports route distinguisher. - route-distinguisher - value that gets attached to VPLS NLRI to distinguish advertisements, value should be unique for each VPLS - site-id - unique setting among members of particular VPLS ©Mikrotik 2012 127 ©Mikrotik 2012 128

134

133

135

©Mikrotik 2012

How it works

. Auto TE works within the range of one area

. Traffic can be forwarded automatically to TE if

. Remote endpoint of pseudowire is the same as TE

. BGP nexthop is tunnel endpoint (can be turned off

©Mikrotik 2012

. Tunnel head end appears as interface

by setting "use-te-nexthop=no")

endpoint

TE configuration								
 TE tunnel path and reservation state 								
<pre>Flags: L = locally-ori path, R = sending-resy # SRC 0 LFP 10.255.1.2:1 [admin@R2] /mpls traff Flags: E = egress, A = # SRC</pre>	<pre>fic-eng path-state> print iginated, E = egress, F - forwarding, F - sendin</pre>	0P						
<pre>[admin@R2] /mpls traf# Flags: X - disabled, 1 # INTERFACE 0 R2_R1 1 R2_R4</pre>	fic-eng interface> print I - invalid BANDWIDTH TE-METRIC REMAINING- 50Mbps 1 50.0Mb 50Mbps 1 40.0Mb	ps						
	©Mikrotik 2012	138						

TE Lab II

- Set up TE tunnels so that VPLS tunnels uses following primary and backup switching paths:
 - VPLS: R1<->R4; TE Path: R1-R3-R4 primary, R1-R2-R4 backup
 - VPLS: R2<->R3: TE Path: R2-R1-R3 primary, R2-R4-R3 backup
- Set up TE tunnel bandwidth limit (automatic and static) and test limitation with bandwidth test.

©Mikrotik 2012

