
Linux Essentials

The LPI Introductory Programme

Linup Front GmbH ⋅ Postfach 10 01 21 ⋅ 64201 Darmstadt ⋅ Germany
Telefon +49(0) 6151 9067 0 ⋅ Telefax +49(0) 6151 9067 299 ⋅ www.linupfront.de

Linup Front GmbH is a leading supplier of high-quality training materials for Linux and Open Source topics, at reason-
able prices – for self-study, school, higher and continuing education and professional training.
Please visit http://shop.linupfront.com/ for details and pricing, or contact us with questions or suggestions.

All representations and information contained in this document have been com-
piled to the best of our knowledge and carefully tested. However, mistakes cannot
be ruled out completely. The authors and Linup Front GmbH assume no respon-
sibility or liability resulting in any way from the use of this material or parts of it
or from any violation of the rights of third parties.
Reproduction of trade marks, service marks and similar monikers in this docu-
ment, even if not specially marked, does not imply the stipulation that these may
be freely usable according to trade mark protection laws. All trade marks are used
without a warranty of free usability and may be registered trade marks of third
parties.

This document is published under the “Creative Commons-BY-NC-ND 3.0 Un-
ported” licence. You may copy and distribute it and make it publically available
as long as the following conditions are met:

Attribution You must make clear that this document is a product of Linup Front
GmbH.

No commercial use You may not use this document for commercial purposes
(contact us if you want to use this document commercially).

No derivatives You may not alter, transform, or build upon this document (con-
tact us if necessary).

The full legal license grant can be found at http://creativecommons.org/licenses/by-

nc-nd/3.0/legalcode

Authors: Tobias Elsner, Thomas Erker, Anselm Lingnau
Technical Editor: Anselm Lingnau ⟨anselm.lingnau@linupfront.de⟩
Typeset in Palatino, Optima and DejaVu Sans Mono

Register this manual on-line via the QR code on the left or http://shop.linupfront.

com/register/hnINuUQTazcf7HFRIM80of/ for updates and interesting special offers.

Contents

1 Computers, Software and Operating Systems 13
1.1 What Is A Computer, Anyway? 14
1.2 Components Of A Computer 15
1.3 Software . 19
1.4 The Most Important Operating Systems 20

1.4.1 Windows And OS X 20
1.4.2 Linux . 21
1.4.3 More Differences And Similarities 22

1.5 Summary. 22

2 Linux and Free Software 25
2.1 Linux: A Success Story 26
2.2 Free Or Open Source? 28

2.2.1 Copyright And “Free Software” 28
2.2.2 Licences . 31
2.2.3 The GPL . 32
2.2.4 Other Licences 35

2.3 Important Free Software 37
2.3.1 Overview . 37
2.3.2 Office and Productivity Tools 37
2.3.3 Graphics and Multimedia Tools 38
2.3.4 Internet Services 39
2.3.5 Infrastructure Software. 39
2.3.6 Programming Languages and Development 39

2.4 Important Linux Distributions 40
2.4.1 Overview . 40
2.4.2 Red Hat . 40
2.4.3 SUSE . 41
2.4.4 Debian . 42
2.4.5 Ubuntu . 43
2.4.6 Others . 44
2.4.7 Differences and Similarities 44

3 First Steps with Linux 47
3.1 Logging In and Out 48
3.2 Desktop Environment and Browser 49

3.2.1 Graphical Desktop Environments 49
3.2.2 Browsers . 51
3.2.3 Terminals and Shells. 51

3.3 Creating and Modifying Text Files 51

4 Who’s Afraid Of The Big Bad Shell? 57
4.1 Why? . 58

4.1.1 What Is The Shell? 58

Copyright © 2012 Linup Front GmbH

4 Contents

4.2 Commands . 59
4.2.1 Why Commands?. 59
4.2.2 Command Structure. 60
4.2.3 Command Types 61
4.2.4 Even More Rules 61

5 Getting Help 63
5.1 Self-Help . 64
5.2 The help Command and the --help Option 64
5.3 The On-Line Manual 64

5.3.1 Overview . 64
5.3.2 Structure . 65
5.3.3 Chapters . 66
5.3.4 Displaying Manual Pages 66

5.4 Info Pages . 67
5.5 HOWTOs. 68
5.6 Further Information Sources 68

6 Files: Care and Feeding 71
6.1 File and Path Names 72

6.1.1 File Names . 72
6.1.2 Directories . 73
6.1.3 Absolute and Relative Path Names 74

6.2 Directory Commands 75
6.2.1 The Current Directory: cd & Co. 75
6.2.2 Listing Files and Directories—ls 76
6.2.3 Creating and Deleting Directories: mkdir and rmdir 77

6.3 File Search Patterns 78
6.3.1 Simple Search Patterns 78
6.3.2 Character Classes 80
6.3.3 Braces . 81

6.4 Handling Files . 82
6.4.1 Copying, Moving and Deleting—cp and Friends. 82
6.4.2 Linking Files—ln and ln -s 84
6.4.3 Displaying File Content—more and less 87
6.4.4 Searching Files—find 87
6.4.5 Finding Files Quickly—locate and slocate 91

7 Regular Expressions 95
7.1 Regular Expressions: The Basics 96

7.1.1 Regular Expressions: Extras 96
7.2 Searching Files for Text—grep 97

8 Standard I/O and Filter Commands 101
8.1 I/O Redirection and Command Pipelines 102

8.1.1 Standard Channels 102
8.1.2 Redirecting Standard Channels 103
8.1.3 Command Pipelines 106

8.2 Filter Commands . 107
8.3 Reading and Writing Files 108

8.3.1 Outputting and Concatenating Text Files—cat 108
8.3.2 Beginning and End—head and tail 108

8.4 Data Management 109
8.4.1 Sorted Files—sort and uniq 109
8.4.2 Columns and Fields—cut, paste etc. 114

9 More About The Shell 119

Copyright © 2012 Linup Front GmbH

5

9.1 Simple Commands: sleep, echo, and date 120
9.2 Shell Variables and The Environment. 121
9.3 Command Types – Reloaded 123
9.4 The Shell As A Convenient Tool 124
9.5 Commands From A File 127
9.6 The Shell As A Programming Language. 128

10 The File System 133
10.1 Terms . 134
10.2 File Types. 134
10.3 The Linux Directory Tree 135
10.4 Directory Tree and File Systems. 143

11 Archiving and Compressing Files 145
11.1 Archival and Compression 146
11.2 Archiving Files Using tar 147
11.3 Compressing Files with gzip 150
11.4 Compressing Files with bzip2 151
11.5 Archiving and Compressing Files Using zip and unzip 152

12 Introduction to System Administration 157
12.1 System Administration Basics 158
12.2 System Configuration 159
12.3 Processes . 160
12.4 Package Management 165

13 User Administration 169
13.1 Basics . 170

13.1.1 Why Users? . 170
13.1.2 Users and Groups 171
13.1.3 People and Pseudo-Users 173

13.2 User and Group Information 173
13.2.1 The /etc/passwd File 173
13.2.2 The /etc/shadow File 176
13.2.3 The /etc/group File 178
13.2.4 The /etc/gshadow File 179

13.3 Managing User Accounts and Group Information 180
13.3.1 Creating User Accounts 180
13.3.2 The passwd Command 182
13.3.3 Deleting User Accounts 183
13.3.4 Changing User Accounts and Group Assignment 184
13.3.5 Changing User Information Directly—vipw 184
13.3.6 Creating, Changing and Deleting Groups 184

14 Access Control 187
14.1 The Linux Access Control System 188
14.2 Access Control For Files And Directories 188

14.2.1 The Basics . 188
14.2.2 Inspecting and Changing Access Permissions. 189
14.2.3 Specifying File Owners and Groups—chown and chgrp 190

14.3 Process Ownership 191
14.4 Special Permissions for Executable Files 191
14.5 Special Permissions for Directories 192

Copyright © 2012 Linup Front GmbH

6 Contents

15 Linux Networking 197
15.1 Networking Basics 198

15.1.1 Introduction and Protocols 198
15.1.2 Addressing and Routing 199
15.1.3 Names and the DNS. 201
15.1.4 IPv6 . 202

15.2 Linux As A Networking Client 203
15.2.1 Requirements 203
15.2.2 Troubleshooting 204

A Sample Solutions 211

B Example Files 223

C Linux Essentials Certification 227
C.1 Exam Objective Overview 227
C.2 Exam Objectives For Linux Essentials 228

D Command Index 235

Index 239

Copyright © 2012 Linup Front GmbH

List of Tables

2.1 Comparison of the most important Linux distributions (as of Febru-
ary, 2012) . 45

5.1 Manual page sections . 65
5.2 Manual Page Topics . 66

6.1 Some file type designations in ls . 76
6.2 Some ls options . 76
6.3 Options for cp . 82
6.4 Keyboard commands for more . 87
6.5 Keyboard commands for less . 88
6.6 Test conditions for find . 88
6.7 Logical operators for find . 89
6.6 Test conditions for find . 89

7.1 Regular expression support . 98
7.2 Options for grep (selected) . 98

8.1 Standard channels on Linux . 103
8.2 Options for cat (selection) . 108
8.3 Options for sort (selection) . 112

9.1 Important Shell Variables . 122
9.2 Key Strokes within bash . 126

10.1 Linux file types . 134
10.2 Directory division according to the FHS 142

Copyright © 2012 Linup Front GmbH

List of Figures

2.1 The Evolution of Linux . 27
2.2 Organizational structure of the Debian project 42

3.1 The GNU Nano text editor . 53

5.1 A manual page . 66

8.1 Standard channels on Linux . 102
8.2 The tee command . 106

10.1 Content of the root directory (SUSE) 136

12.1 The top program . 163

Copyright © 2012 Linup Front GmbH

Preface

Linux Essentials is a new certification by the Linux Professional Institute (LPI) which
is aimed especially at schools and universities in order to introduce children and
young adults to Linux. The Linux Essentials certificate is slated to define the basic
knowledge necessary to use a Linux computer productively, and through a cor-
responding education programme aid young people and adults new to the open
source community in understanding Linux and open-source software in the con-
text of the ITC industry. See appendix C for more informaton about the Linux
Essentials certificate.

With this training manual, Linup Front GmbH introduces the first comprehen-
sive documentation for Linux Essentials exam preparation. The manual presents
the requisite knowledge extensively and with many practical examples and thus
provides candidates, but also Linux newcomers in general, with a solid founda-
tion for using and understanding the free Linux operating system as well as for
attaining in-depth knowledge about running and administering Linux. In addi-
tion to a detailed introduction to the background of Linux and free/open-source
software, we explain the most important Linux concepts and tools such as the
shell, how to handle files and scripts, and the file system structure. Insights into
system administration, user and permission management and Linux as a network-
ing client round off the presentation.

Based on the content of this training manual, Linux Essentials alumni are well-
prepared to pursue further certifications including the LPI’s LPIC programme as
well as vendor-specific certificates like those from Red Hat or Novell/SUSE.

The training manual is particularly suitable for a Linux Essentials preparation
class at general-education or vocational schools, academies, or universities, but
by virtue of its detailed approach and numerous exercises with sample solutions
can also be used for self-study.

This courseware package is designed to support the training course as effi-
ciently as possible, by presenting the material in a dense, extensive format for
reading along, revision or preparation. The material is divided in self-contained
chapters detailing a part of the curriculum; a chapter’s goals and prerequisites chapters

goals

prerequisites

are summarized clearly at its beginning, while at the end there is a summary and
(where appropriate) pointers to additional literature or web pages with further
information.

B Additional material or background information is marked by the “light-
bulb” icon at the beginning of a paragraph. Occasionally these paragraphs
make use of concepts that are really explained only later in the courseware,
in order to establish a broader context of the material just introduced; these
“lightbulb” paragraphs may be fully understandable only when the course-
ware package is perused for a second time after the actual course.

A Paragraphs with the “caution sign” direct your attention to possible prob-
lems or issues requiring particular care. Watch out for the dangerous bends!

C Most chapters also contain exercises, which are marked with a “pencil” icon exercises

at the beginning of each paragraph. The exercises are numbered, and sam-
ple solutions for the most important ones are given at the end of the course-

Copyright © 2012 Linup Front GmbH

12 Preface

ware package. Each exercise features a level of difficulty in brackets. Exer-
cises marked with an exclamation point (“!”) are especially recommended.

Excerpts from configuration files, command examples and examples of com-
puter output appear in typewriter type. In multiline dialogs between the user and
the computer, user input is given in bold typewriter type in order to avoid misun-
derstandings. The “�����” symbol appears where part of a command’s output
had to be omitted. Occasionally, additional line breaks had to be added to make
things fit; these appear as “�
�”. When command syntax is discussed, words enclosed in angle brack-

ets (“⟨Word⟩”) denote “variables” that can assume different values; material in
brackets (“[-f ⟨file⟩]”) is optional. Alternatives are separated using a vertical bar
(“-a |-b”).

Important concepts are emphasized using “marginal notes” so they can be eas-Important concepts

ily located; definitions of important terms appear in bold type in the text as welldefinitions
as in the margin.

References to the literature and to interesting web pages appear as “[GPL91]”
in the text and are cross-referenced in detail at the end of each chapter.

We endeavour to provide courseware that is as up-to-date, complete and error-
free as possible. In spite of this, problems or inaccuracies may creep in. If you
notice something that you think could be improved, please do let us know, e.g.,
by sending e-mail to

courseware@linupfront.de

(For simplicity, please quote the title of the courseware package, the revision ID on
the back of the title page and the page number(s) in question.) We also welcome
contact by telephone, telefax or “snail mail”. Thank you very much!

Copyright © 2012 Linup Front GmbH

1
Computers, Software and
Operating Systems

Contents

1.1 What Is A Computer, Anyway? 14
1.2 Components Of A Computer 15
1.3 Software . 19
1.4 The Most Important Operating Systems 20

1.4.1 Windows And OS X 20
1.4.2 Linux . 21
1.4.3 More Differences And Similarities 22

1.5 Summary. 22

Goals

• Obtaining basic computer hardware knowledge
• Being aware of different operating systems and assessing their commonali-

ties and differences

Prerequisites

• Basic computing knowledge is useful

lxes-intro.tex ()

14 1 Computers, Software and Operating Systems

1.1 What Is A Computer, Anyway?

Before we get into the details of what a computer is, here are a few quotes from
notable people within the computing community:

“Originally one thought that if there were a half dozen large com-
puters in [the United States], hidden away in research laboratories,
this would take care of all requirements we had throughout the
country.” Howard H. Aiken, 1952

Howard Aiken was a computing pioneer and the designer of IBM’s first computer,
the “Harvard Mark I”. The first computers in a modern sense were built duringEarly computers

World War II to assist with decrypting secret messages or doing difficult calcu-
lations, and they were big, complicated and error-prone devices – the electronic
components such as transistors or integrated circuits which today’s computers
consist of hadn’t been invented yet. What did come to light during this time and
the years immediately after the war were a number of basic assumptions that had
to hold for a device to be considered a “computer”:

• A computer processes data according to a sequence of automatically executed
instructions, a program.

• Programs must allow for conditional execution and loops.

• It must be possible to change or replace the program that a computer exe-
cutes.

For example, many technical devices – from television sets and digital cameras
to washing machines or cars – today contain programmed control units, almost
small computers. Even so, we don’t consider these devices “computers”, because
they only execute fixed, unchangeable programs. Conversely, a pocket calculator
can be used to “process data”, but – at least as long as it isn’t a more expensive
“programmable calculator” – that doesn’t happen automatically; a human being
must tap the keys.

In the early 1950s, computers were highly specialised devices that one would
– exactly as Aiken stipulated – expect to see mostly within research institutions.
Science-fiction films of the time display the halls, replete with rows of cupboards
containing mysterious spinning reels. Within the space of not quite 70 years, this
image has changed dramatically1.

“There is no reason for anyone to have a computer in their home.”
Ken Olsen, 1977

Ken Olsen was the CEO of another computer manufacturer, Digital Equipment“Small” computers in the 1970s

Corporation (DEC), which spearheaded the development of “small” computers
in the 1970s2 – where “small” at the time was understood as meaning something
like “does not need a machine hall with air conditioning and its own power plant
and costs less than a million dollars”; advances in hardware technology allowed
this to change, towards the end of the 1970s, to something like “can be bodily
lifted by two people”.

B DEC is important to the Linux community because Unix – the operating
system that insprired Linus Torvalds to start Linux some twenty years later
– was first developed on DEC PDP-8 and PDP-11 computers.

The 1970s also saw the advent of the first “home computers”. These cannot behome computers

compared with today’s PCs – one had to solder them together on one’s own (which
1The classic “quote” in this context is usually ascribed to Thomas J. Watson, the CEO if IBM, who

is thought to have said, in 1943, something along the lines of “There is a world market for about five
computers”. Unfortunately this has never been verified. And if he did actually claim this in 1943, he
would have been right at least for the next ten years or so.

2DEC was acquired by Compaq in 1998, and Compaq by Hewlett-Packard in 2002.

Copyright © 2012 Linup Front GmbH

1.2 Components Of A Computer 15

would be physically impossible today), and they rarely featured a reasonable key-
board and seldom if ever a decent display. They were for the most part a tinkerer’s
pastime, much like an electric train set, because in all honesty they weren’t really
useful for much at all. Even so, they were “computers” in the sense of our earlier
definition, because they were freely programmable – even though the programs
had to be laboriously keyed in or (with luck) loaded from audio cassette tape. Still
they weren’t taken completely seriously, and Ken Olsen’s quote has accordingly
often been misconstrued: He had nothing whatsoever against small computers
(he was in the business of selling them, after all). What he didn’t conceive of was
the idea of having one’s complete household (heating, lights, entertainment and
so on) controlled by a computer – an idea that was quite hypothetical at the time
but today seems fairly feasible and perhaps no longer as absurd.

Only during the late 1970s and 1980s, “home computers” mutated from kits
to ready-to-use devices (names like “Apple II” or “Commodore 64” may still be
familiar to the older members of our audience) and started appearing in offices,
too. The first IBM PC was introduced in 1981, and Apple marketed the first “Mac- IBM PC

intosh” in 1984. The rest, as they say, is history – but one should not forget that
the world of computers does not consist of PCs and Macs only. The giant, hall-
filling computers of yore are still around – even though they tend to get rarer and
often really consist of large groups of PCs that are quite closely related to the PCs
on our tables and which cooperate. However, the principle hasn’t changed from
Howard Aiken’s time: Computers are still devices that automatically process data
according to changeable programs which may contain conditions and loops. And
things are likely to stay that way.

Exercises

C 1.1 [1] What was the first computer you used? What type of processor did it
contain, how much RAM, and how big was the hard disk (if there was one
– if not, how was data stored permanently)?

1.2 Components Of A Computer

Let’s take the opportunity of casting a glance at the “innards” of a computer (or,
more precisely, an “IBM-compatible” PC) and the components we are likely to
find there:

Processor The processor (or “CPU”, for “central processing unit”) is the core of
the computer: Here is where the automatic program-controlled data pro-
cessing takes place that actually makes it a computer. Today’s processors
usually contain several “cores”, which means that the major components of
the processor exist multiple times and can operate independently, which in
principle increases the computer’s processing speed and thereby its perfor-
mance – and particularly fast computers often have more than one proces-
sor. PCs normally contain processors by Intel or AMD (which may differ
in detail but can execute the same programs). Tablets and smartphones
generally use ARM processors, which aren’t quite as powerful but much
more energy-efficient. Intel and AMD processors cannot directly execute
programs prepared for ARM processors and vice-versa.

RAM A computer’s working memory is called “RAM” (or “random-access mem-
ory”, where “random” means “arbitrary” rather than “haphazard”). This
stores not only the data being processed, but also the program code being
executed.

B This is an ingenuous trick going back to the computing pioneer John
von Neumann, a contemporary of Howard Aiken. It implies that there
is no longer a difference between code and data – this means programs

Copyright © 2012 Linup Front GmbH

16 1 Computers, Software and Operating Systems

can manipulate code just as well as addresses or kitchen recipes. (In
the old days, one would “program” by plugging and unplugging leads
on the outside of the computer, or programs were punched on paper
tape or cards and could not be changed straightforwardly.)

Today’s computers normally feature 1 gibibyte of RAM or more. 1 gibibyte
is 230, or 1, 073, 741, 824 bytes3 – really an inconceivably large number. By
way of comparison: Harry Potter and the Deathly Hallows contains approxi-
mately 600 pages of up to 1,700 letters, spaces, and punctuation characters
– perhaps a million characters. Hence, one gibibyte corresponds to about
1,000 Harry Potter tomes, at somewhat more than a pound per book that is
already a van full of them, and if you’re not just interested in the exploits of
the young wizard, 1,000 books is an impressive library.

Graphics card Not so long ago people were happy if their computer could con-
trol an electric typewriter to produce its output. The old home computers
were connected to television sets, producing images that could often only
be called atrocious. Today, on the other hand, even simple “smartphones”
feature quite impressive graphics, and common PCs contain graphics hard-
ware that would have cost the equivalent of an expensive sports car or small
house in the 1990s4. Today’s watchword is “3D acceleration”, which doesn’t
mean that the display actually works in 3D (although even that is slowly get-
ting fashionable) but that processing the graphics inside the computer does
not just involve left, right, top and bottom – the directions visible on a com-
puter monitor – but also front and back, and that in quite a literal sense: For
photorealistic games it is quite essential whether a monster lurks in front
of or behind a wall, hence whether it is visible or not, and one of the goals
of modern graphic cards is to relieve the computer’s CPU of such decisions
in order to free it up for other things. Contemporary graphics cards con-
tain their own processors, which can often perform calculations much faster
than the computer’s own CPU but are not as generally useful.

B Many computers don’t even contain a separate graphics card because
their graphics hardware is part of the CPU. This makes the computer
smaller, cheaper, quieter and more energy-efficient, but its graphics
performance will also take somewhat of a hit – which may not be an
actual problem unless you are keen on playing the newest games.

Motherboard The motherboard is the (usually) rectangular, laminated piece of
plastic that the computer’s CPU, RAM, and graphics card are affixed to – to-
gether with many other components that a computer requires, such as con-
nectors for hard disks, printers, a keyboard and mouse, or network cables,
and the electronics necessary to control these connectors. Motherboards for
computers come in all sorts of sizes and colours5 – for small, quiet comput-
ers that can act as video recorders in the living room or big servers that need
a lot of space for RAM and several processors.

Power supply A computer needs electricity to work – how much electricity de-
pends on exactly which components it contains. The power supply is used
to convert the 240 V AC mains supply into the various low DC voltages that
the electronics inside the computer require. It must be selected such that it
can furnish enough power for all the components (fast graphics cards are
usually the number-one guzzlers) while not being overdimensioned so that
it can still operate efficiently.

3People will commonly call this a “gigabyte”, but a “gigabyte” is really 109 bytes, i. e., nearly 7 per-
cent less.

4All thanks, incidentally, to the unflagging popularity of awesome computer games. Whoever be-
lieves that video games are of no earthly use should take a minute to consider this.

5Really! Even though one shouldn’t select one’s motherboard according to colour.

Copyright © 2012 Linup Front GmbH

1.2 Components Of A Computer 17

Most of the electricity that the power supply pumps into the computer will
sooner or later end up as heat, which is why good cooling is very impor-
tant. For simplicty, most computers contain one or more fans to blow fresh
air onto the expensive electronics, or to remove hot air from the case. With
appropriate care it is possible to build computers that do not require fans,
which makes them very quiet, but such computers are comparatively ex-
pensive and usually not quite as fast (since, with processors and graphics
cards, “fast” usually means “hot”).

Hard disks While a computer’s RAM is used for the data currently being pro-
cessed (documents, spreadsheets, web pages, programs being developed,
music, videos, …—and of course the programs working on the data), data
not currently in use are stored on a hard disk. The main reason for this is that
hard disks can store much more data than common computers’ RAM—the
capacity of modern hard disks is measured in tebibytes (1 TiB = 240 Byte),
so they exceed typical RAM capacities by a factor of 100–1000.

B We pay for this increase in space with a decrease in retrieval times—
RAM access times are measured in nanoseconds while those to data
on (magnetic) hard disks are measured in milliseconds. This is a mere
6 orders of magnitude—the difference between a metre and 1,000 kilo-
metres.

Traditionally, hard disks consist of rotating platters coated with a magneti-
sable material. Read/write heads can magnetise this material in different
places and re-read the data thus stored later on. The platters rotate at 4,500
to 15,000 RPM, and the difference between the read/write head and the
platter is extremely minute (up to 3 nm). This means that hard disks are
quite sensitive to disruption and falls, because if the read/write head comes
into contact with the platter while the disk is running—the dreaded “head
crash”—the disk is destroyed.

B Newfangled hard disks for mobile computers have acceleration sen-
sors which can figure out that the computer is falling, to try and shut
down the hard disk in order to prevent damage.

The newest fashion is SSDs or “solid-state disks”, which instead of magne-
tised platters use “flash memory” for storage—a type of RAM which can
maintain its content even without electricity. SSDs are faster than magnetic
hard disks, but also considerably more expensive per gigabyte of storage.
However, they contain no moving parts, are impervious to being shoved
or dropped, and save energy compared to conventional hard disks, which
makes them interesting for portable computers.

B SSDs are also reputed to “wear out” since the flash storage spaces
(called “cells”) are only rated for a certain number of write opera-
tions. Measurements have shown that this does not lead to problems
in practice.

There are various methods of connecting a hard disk (magnetic or SSD) to a
computer. Currently most common is “serial ATA” (SATA), older computers
use “parallel ATA”, also called “IDE”. Servers also use SCSI or SAS (“serially
attached SCSI”) disks. For external disks, one uses USB or eSATA (a variant
of SATA with sturdier connectors).

B Incidentally: The difference between gigabytes and gibibytes (or ter-
abytes and tebibytes) is most notable with hard disks. For example,
you buy a “100 GB drive”, connect it to your computer and, shock hor-
ror, realise that your computer only shows you 93 “GB” of free space
on the new disk! However, your drive is not damaged (lucky you) –

Copyright © 2012 Linup Front GmbH

18 1 Computers, Software and Operating Systems

the disk drive manufacturer only uses (quite correctly) “gigabytes”,
i. e., billions of bytes, while your computer probably (if inaccurately)
calculates the free space in units of “gibibytes” or 230 bytes.

Optical drives Besides hard drives, PCs usually support optical drives that can
read, and often also write, media such as CD-ROMs, DVDs or Blu-ray disks.
(Mobile devices sometimes have no room physically for an optical drive,
which does not mean such drives can’t be connected externally.) Optical
media—the name derives from the fact that the information on there is ac-
cessed by means of a laser—are mostly used for the distribution of software
and “content” (music or films), and their importance is waning as more and
more companies rely on the Internet as a distribution medium.

B In former times one also considered optical media for backup copies,
but today this is no longer realistic—a CD-ROM can hold up to ap-
proximately 900 MiB of data and a DVD up to 9 GiB or so, thus for a
full backup of a 1 TiB hard disk you would require 1000 CD-size or
100 DVD-size media, and constantly swapping them in and out would
also be a hassle. (Even Blu-ray discs can only fit 50 GiB or so, and drives
that can write to Blu-ray discs are still fairly expensive.)

Display You can still see it in old movies: the green sheen of the computer screen.
In reality, green displays have all but disappeared, colour is in fashion, and
new displays are no longer massive hulks like the CRTs (cathode-ray tubes)
we used to have, but are slim, elegant monitors based on liquid crystals
(LCD, “liquid-crystal display”). LCDs don’t confine themselves to the ad-
vantage of taking up less space on a desk, but also neither flicker nor bother
the user with possibly harmful radiation—a win-win situation. There are a
few disadvantages such as colour changes when you look at the screen at a
too-acute angle, and cheaper devices may deliver a blotchy picture because
the backlight is not uniform.

B With CRTs one used to take care to not let them stand around unused
showing the same picture for long periods of time, because the picture
could “burn in” and appear as a permanent blurry backdrop. Accord-
ingly one used a “screen saver”, which after a certain amount of idle
time would replace the content of the screen by a more or less cute an-
imation to avoid burn-in (the classic was an aquarium with fish and
other aquatic fauna). LCDs no longer suffer from the burn-in problem,
but screen savers are still sticking around for decorative value.

LCDs are available in all sizes from “smartphone” to wall-size large screens;
their most important property is the resolution, which for PC displays usu-resolution

ally ranges between 1366 × 768 (horizontally × vertically) and 1920 × 1080
“pixels”. (Lower and higher resolutions are possible, but do not necessarily
make economic or visual sense.) Many computers support more than one
screen in order to enlarge the working space.

B Also usual today is an aspect ration of 16 ∶ 9, which corresponds to
high-definition television—actually a silly development, since most
computers aren’t even used for watching television, and a taller but
narrower display (such as the formerly-common 4 ∶ 3 format) is bet-
ter suited most of the more frequently-used applications like word
processing or spreadsheet calculations.

Other peripherals Of course you can connect many more devices to a computer
besides the ones we mentioned: printers, scanners, cameras, television re-
ceivers, modems, robotic arms, small missile launchers to annoy your cu-
bicle neighbours, and so on. The list is virtually endless, and we cannot
discuss every class of device separately here. But we can still make a few
observations:

Copyright © 2012 Linup Front GmbH

1.3 Software 19

• One commendable trend, for example, is the simplification of connec-
tions. While almost every class of device used to have their own in-
terface (parallel interfaces for printers, serial interfaces for modems,
“PS/2” interfaces for keyboards and mice, SCSI for scanners, …), to-
day most devices use USB (universal serial bus), a relatively foolproof
and reasonably fast method which also supports “hot-plugging” con-
nections while the computer is running.

• Another trend is that towards more “intelligence” in the peripherals
themselves: Formerly, even expensive printers were fairly stupid de-
vices at an IQ level of electric typewriters, and programmers had to
very carefully send exactly the right control codes to the printer to pro-
duce the desired output. Today, printers (at least good printers) are re-
ally computers in their own right supporting their own programming
languages that make printing much less of a hassle for programmers.
The same applies in a similar fashion to many other periperals.

B Of course there are still very stupid printers (especially at lower
price points) which leave preparing the output to the computer
itself. However, these still make a programmer’s life as easy as their
more expensive relations.

Exercises

C 1.2 [2] Open your computer (possibly under the direction of your teacher,
instructor, or legal guardian—and don’t forget switching it off and unplug-
ging it first!) and identify the most important components such as the CPU,
RAM, motherboard, graphics card, power supply, and hard disk. Which
components of your computer did we not talk about here?

1.3 Software

Just as important as a computer’s “hardware”, i. e., the technical components it
consists of6, is its “software”—the programs it is running. This can very roughly
be divided into three categories:

• The firmware is stored on the computer’s motherboard and can only be firmware

changed or replaced inconveniently if at all. It is used to put the computer
into a defined state after switching it on. Often there is a way of invoking
a setup mode that allows you to set the clock and enable or disable certain
properties of the motherboard.

B On PCs, the firmware is called “BIOS” (Basic Input/Output System)
or, on newer systems, “EFI” (Extensible Firmware Interface).

B Some motherboards include a small Linux system that purportedly
boots more quickly than Linux and which is supposed to be used to
surf the Internet or watch a DVD without having to boot into Windows.
Whether this is actually worth the trouble is up to debate.

• The operating system makes the computer into a usable device: It manages operating system

the computer’s resources such as the RAM, the hard disks, the processing
time on the CPU(s) available to individual programs, and the access to other
peripherals. It allows starting and stopping programs and enforces a sep-
aration between several users of the computer. Besides, it enables—on an
elementary level—the participation of the computer in a local area network
or the Internet. The operating system frequently furnishes a graphical user

6Definition of hardware: “The parts of a computer that can be kicked” (Jeff Pesis)

Copyright © 2012 Linup Front GmbH

20 1 Computers, Software and Operating Systems

interface and thus determines how the computer “looks and feels” to its
users.
When you buy a new computer it is usually delivered with a pre-installed
operating system: PCs with Microsoft Windows, Macs with OS X, smart-
phones often with Android (a Linux derivative). The operating system,
though, is not tied as closely to a computer as the firmware, but can in many
cases be replaced by a different one—for example, you can install Linux on
most PCs and Macs.

B Or you install Linux in addition to an existing operating system—
usually not a problem either.

• User-level programs allow you to do something useful, such as write doc-User-level programs

uments, draw or manipulate pictures, compose music, play games, surf the
Internet or develop new software. Such programs are also called applica-applications

tions. Additionally, there are often utilities that the operating system pro-utilities
vides in order to allow you—or a designated “system administrator”—to
make changes to the computer’s configuration and so on. Servers, in turn,
often support software that provides services to other computers, such as
web, mail or database servers.

1.4 The Most Important Operating Systems

1.4.1 Windows And OS X

When talking about computer operating systems, most people will automatically
think of Microsoft Windows7. This is due to the fact that nowadays most PCs
are sold with Windows preinstalled—really not a bad thing in itself, since their
owners can get them up and running without having to take the trouble to install
an operating system first, but, on the other hand, a problem because it makes life
hard for alternative operating sysetms such as Linux.

B In fact it is not at all straightforward to buy a computer without a prein-
stalled copy of Windows—for example, because you want to use it exclu-
sively with Linux—, except when building one from scratch. Theoretically
you are supposed to be able to get a refund for an unused preinstalled copy
of Windows from the computer’s manufacturer, but we know of nobody
who actually managed to obtain any money.

Today’s Windows is a descendant of “Windows NT”, which was Microsoft’sWindows NT

attempt to establish an operating system that was up to the standards of the time
in the 1990s (earlier versions such as “Windows 95” were graphical extensions to
the then-current Microsoft operating system, MS-DOS, and fairly primitive even
by the standards of the day). Decency forbids us a critical appreciation of Win-
dows here; let it suffice to say that it does approximately what one would expect
from an operating system, provides a graphical user interface and supports most
peripheral devices (support for more is provided by the individual device manu-
facturers).

Apple’s “Macintosh” was launched in 1984 and has since been using an oper-
ating system called “Mac OS”. Over the years, Apple made various changes to theMac OS

platform (today’s Macs are technically about the same as Windows PCs) and op-
erating system, some of them quite radical. Up to and including version 9, MacOS
was a fairly flimsy artefact which, for example, only provided rudimentary sup-
port for running several programs at the same time. The current “Mac OS X”—the
“X” is a Roman 10, not the letter “X”—is based on an infrastructure related to BSD
Unix and is not unlike Linux in many ways.

7Many people will not even be aware that there are other operating systems at all.

Copyright © 2012 Linup Front GmbH

1.4 The Most Important Operating Systems 21

B Since February, 2012, the official name for the Macintosh operating system
is “OS X” rather than “Mac OS X”. If we let slip a “Mac OS” every so often,
you know what we really mean.

The big difference between Windows and OS X is that OS X is sold exclusively Differences

with Apple computers and will not run on “normal” PCs. This makes it much
more straightforward for Apple to provide a system that is obviously very ho-
mogenous. Windows, on the other hand, must run on all sorts of PCs and support
a much wider array of hardware components that can occur in completely unfore-
seen combinations. Hence, Windows users have to contend with incompatibili-
ties that are sometimes difficult or even impossible to sort out. On the other hand,
there is a much greater selection of hardware for Windows-based computers, and
prices are, on the whole, less exorbitant.

Windows and OS X are similar in that they are both “proprietary” software: Similarities

Users are forced to accept what Microsoft or Apple put in front of them, and they
cannot examine the actual implementation of the system, let alone make changes
to it. They are bound to the upgrade schedule of the system, and if the manufac-
turer removes something or replaces it by something else, they need to adapt to
that.

B There is one difference here, though: Apple is essentially a hardware man-
ufacturer and only provides OS X to give people an incentive to buy Macs
(this is why OS X isn’t available for non-Macs). Microsoft, on the other hand,
does not build computers, and instead makes its money selling software
such as Windows which runs on arbitrary PCs. Therefore, an operating sys-
tem like Linux is much more of a threat to Microsoft than to Apple—most of
the people who buy an Apple computer do this because they want an Apple
computer (the complete package), not because they are especially interested
in OS X. The PC as a platform, however, is being encroached upon by tablets
and other new-fangled types of computer that don’t run Windows, and that
puts Microsoft under extreme pressure. Apple could easily survive selling
just iPhones and iPads instead of Macs—Microsoft without Windows would
probably go bankrupt fairly soon in spite of having loads of money in their
bank account.8

1.4.2 Linux

Linux is an operating system that was first started out of curiosity by Linus Tor-
valds, but then took on a life of its own—in the meantime, hundreds of developers
(not just students and hobbyists, but also professionals at companies such as IBM,
Red Hat, or Oracle) are developing it further.

Linux was inspired by Unix, an operating system developed in the 1970s at
AT&T Bell Laboratories and geared towards “small” computers (see above for the
meaning of “small” in this context). Unix soon became the preferred system for
research and technology. For the most part, Linux uses the same concepts and
basic ideas as Unix, and it is easy to get Unix software to run on Linux, but Linux
itself does not contain Unix code, but is an independent project.

Unlike Windows and OS X, Linux isn’t backed by an individual company
whose economic success hinges on the success of Linux. Linux is “freely avail-
able” and can be used by anyone—even commercially—who subscribes to the
rules of the game (as outlined in the next chapter). This together with the fact
that by now Linux no longer runs just on PCs, but in substantially identical form
on platforms ranging from telephones (the most popular smartphone operating

8Actually, the real battlefield isn’t Windows but Office—most people don’t buy Windows because
they are big fans of Windows, but because it is the only operating system for arbitrary (i. e., cheap)
PCs that runs Office—, but the same consideration applies if you replace “Apple” by “Google”. In
point of fact, Office and (PC-based) Windows are the only products that actually make Microsoft an
appreciable amount of money; everything else that Microsoft does (with the possible exception of the
Xbox gaming console) they do at a loss.

Copyright © 2012 Linup Front GmbH

22 1 Computers, Software and Operating Systems

system, Android, is a Linux offshoot) to the largest mainframes (the ten fastest
computers in the world are all running Linux) makes Linux the most versatile
operating system in the history of modern computing.

Strictly speaking “Linux” is just the operating system kernel, i. e., the program
that handles the allocation of resources to applications and utilities. Since an oper-
ating system without applications isn’t all that useful, one usually installs a Linux
distribution, which is to say a package consisting of “Linux” proper and a se-distributions

lection of applications, utilities, documentation and other useful stuff. The nice
thing is that, like Linux itself, most Linux distributions are “freely available” and
hence available free of charge or at very low cost. This makes it possible to equip a
computer with software whose equivalents for Windows or OS X would run into
thousands of dollars, and you do not run the risk of falling foul of licensing re-
strictions just because you installed your Linux distribution on all your computers
as well as Aunt Millie’s and those of your buddies Susan and Bob.

B There is more information on Linux and Linux distributions in Chapter 2.

1.4.3 More Differences And Similarities

Actually, the three big operating systems—Linux, Windows, and OS X—differ
only in detail in what they present to the users. All three offer a graphical usergraphical user interface

interface (GUI) which allows even casual users to manage their files through sim-
ple gestures like “drag and drop”. Many popular applications are available for
all three operating systems, so which one you are using at the end of the day be-
comes almost immaterial as long as you are spending most of your time inside the
web browser, office package, or e-mail program. This is an advantage because it
enables a “gradual” migration from one system to the other.

Besides the graphical interface, all three systems also offer a way to use a “com-command line

mand line” to input textual commands which the system then executes. With
Windows and OS X, this feature is mostly used by system administrators, while
“normal” users tend to shun it—a question of culture. With Linux, on the other
hand, the command line is much less ostracised, which may have to do with its
descent from the scientific/technical Unix philosophy. As a matter of fact, many
tasks are performed more conveniently and efficiently from the command line,
especially with the powerful tools that Linux (and really also OS X) provide. As a
budding Linux user, you do well to open up to the command line and learn about
its strengths and weaknesses, just as you should learn about the strengths and
weaknesses of the GUI. A combination of both will give you the greatest versatil-
ity.

Exercises

C 1.3 [1] If you have experience with a proprietary operating system like Win-
dows or OS X: Which applications do you use most frequently? Which of
them are “free software”?

1.5 Summary

Today’s PCs, whether based on Linux, Windows, or OS X, have more similarities
than differences—as far as their hardware, their basic concepts, and their use is
concerned. Without doubt you can use any of the three to go about your daily
work, and none of them is obviously and uncontestedly “the best”.

However, this manual talks mostly about Linux, and we will use the rest of
these pages to provide an introduction to that system that is as extensive as
possible—explain its use, highlight its strengths and, where necessary, point out
its weaknesses. By now, Linux is a serious alternative to the other two systems
and surpasses them in various aspects, in some of them widely. We are glad to

Copyright © 2012 Linup Front GmbH

1.5 Summary 23

see that you are prepared to get involved, and we wish you a lot of fun learning,
practising, and using Linux and—if you are interested in the LPI’s Linux Essentials
certification—the best of success in the exam!

Summary

• Computers are devices that process data according to an automatically ex-
ecuted, changeable program allowing conditional execution and loops.

• The most important components of a PC include the processor, RAM,
graphics card, motherboard, hard disks et cetera.

• The software on a computer can be divided into firmware, the operating
system, and user-level programs.

• The most popular PC operating system is Microsoft’s Windows. Apple
computers use a different operating system called OS X.

• Linux is an alternative operating system for PCs (and many other types of
computer) which is not developed by a single company, but by a large num-
ber of volunteers.

• Linux distributions extend the Linux operating system kernel with applica-
tions and documentation to result in a system that is actually usable.

Copyright © 2012 Linup Front GmbH

2
Linux and Free Software

Contents

2.1 Linux: A Success Story 26
2.2 Free Or Open Source? 28

2.2.1 Copyright And “Free Software” 28
2.2.2 Licences . 31
2.2.3 The GPL . 32
2.2.4 Other Licences 35

2.3 Important Free Software 37
2.3.1 Overview . 37
2.3.2 Office and Productivity Tools 37
2.3.3 Graphics and Multimedia Tools 38
2.3.4 Internet Services 39
2.3.5 Infrastructure Software. 39
2.3.6 Programming Languages and Development 39

2.4 Important Linux Distributions 40
2.4.1 Overview . 40
2.4.2 Red Hat . 40
2.4.3 SUSE . 41
2.4.4 Debian . 42
2.4.5 Ubuntu . 43
2.4.6 Others . 44
2.4.7 Differences and Similarities 44

Goals

• Knowing the basic principles of Linux and free software
• Being able to place the basic FOSS licenses
• Having heard of the most important free applications
• Having heard of the most important Linux distributions

Prerequisites

• Basic knowledge about computers and operating systems (Chapter 1)

lxes-linux.tex ()

26 2 Linux and Free Software

2.1 Linux: A Success Story

In the summer of 1991, Linus Torvalds, who was 21 years old at the time, studied
computer science at the technical university of Helsinki, Finland1 At the time he
owned a new 386 PC that he wanted to experiment with, and amused himself by
writing a terminal emulator which ran on the raw hardware without an operat-
ing system, and which allowed him to access the university’s Unix system. This
program grew into the first Linux operating system kernel.

B Unix was already about 20 years old at that point, but was the operating
system of choice at universities and wherever research or development were
done—the scientific “workstations” of the time almost exclusively ran on
various versions of Unix.

B Unix itself had started—almost like Linux—as a hobby-type project of KenUnix origins

Thompson and Dennis Ritchie at Bell Laboratories, the American telecom-
munications giant AT&T’s research arm. It very quickly mutated into quite
a useful system, and since it was written, for the most part, in a high-level
language (C), it could be ported reasonably quickly to other computing plat-
forms than the original PDP-11. In addition, during the 1970s AT&T was
forced by a consent decree to refrain from selling software, so Unix was
“given away” at cost, without support—and since the system was small and
fairly straightforward, it became a popular case study in the operating sys-
tem seminars of most universities.

B Towards the end of the 1970s, students of the University of Californa in
Berkeley ported Unix to the VAX, the successor of the PDP-11, and intro-
duced various improvements that began to be circulated as “BSD” (short forBSD

“Berkeley Software Distribution”). Various offshoots of BSD are still current
today.

B To develop the first versions of Linux, Linus made use of “Minix”, a Unix-Minix

like operating system written for teaching purposes by Andrew S. Tanen-
baum of the Free University of Amsterdam. Minix was deliberately kept
simple, and it wasn’t freely available, so did not represent a serious operat-
ing system—help was obviously needed!2

On 25 August 1991, Linus announced his project to the public and invited the
rest of the world to join in. At this point the system functioned as an alternative
operating system kernel for Minix.

B At that time the system didn’t yet have a proper name. Linus called it
“Freax” (as a portmanteau word from “freak” and “Unix”); he did briefly
consider “Linux” but rejected this as too egotistical. When Linus’ system
was uploaded to the university’s FTP server, Linus’ colleague Ari Lemmke,
who didn’t like the name “Freax”, took the liberty of renaming it to “Linux”.
Linus later approved of the change.

Linux generated considerable interest and many volunteers decided to collabo-
rate. Linux 0.99, the first version licensed under the GPL (Section 2.2.3), appeared
in December, 1992, and represented quite a grown-up operating system with com-
plete, if simple, Unix functionality.

Linux 2.0 appeared in early 1996 and introduced some important new featuresLinux 2.0

such as support for multiprocessors and the ability to load kernel modules at
runtime—an important innovation along the road to user-friendly Linux distri-
butions.

B Another new feature in Linux 2.0 was “Tux”, the penguin, as the officialTux

1Linus Torvalds is an ethnic Finn (he became an American citizen in September, 2010), but a member
of the Swedish-speaking minority. This is why he has a reasonably pronounceable name.

2BSD wasn’t freely available at the time, either; Linus once said that, had BSD been usable at the
time, he would never have started Linux.

Copyright © 2012 Linup Front GmbH

2.1 Linux: A Success Story 27

0 MB

10 MB

20 MB

30 MB

40 MB

50 MB

60 MB

70 MB

80 MB

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Si
ze

 o
f l

in
ux

-*
.ta

r.b
z2

2.0
2.1
2.2
2.3
2.4
2.5
2.6
3.x

Figure 2.1: The evolution of Linux, measured by the size of linux-*.tar.bz2. Each marker corresponds with a
Linux version. During the 15 years from Linux 2.0 to Linux 3.2, the size of the compressed Linux
source code has increased by a factor of almost 16.

Linux mascot. Linus Torvalds had been set upon by a penguin in Australia,
which had greatly impressed him. The iconic sitting penguin with its yel-
low feet and beak was drawn by Larry Ewing and made available to the
community at large.

Linux 2.6 saw a reorganisation of the development process. While, earlier on, development process

version numbers with an odd second component (such as “2.3”) had been con-
sidered developer versions and those with an even second component (like “2.0”)
stable versions suitable for end users, the Linux developers resolved to keep de-
veloper and stable versions from diverging to the large extent previously seen.
Starting with Linux 2.6, there is no longer a separate line of development kernels,
but improvements are being introduced into the next version and are tested as
extensively as possible before that version is officially released.

B This works approximately as follows: After Linux 2.6.37 is released, Linus
collects proposed changes and improvements for the next kernel, includes
them into his official version and publishes that as Linux 2.6.38-rc1 (for “re-
lease candidate 1”). This version is tested by various people, and any fixes
or improvements are collected in Linux 2.6.38-rc2 and so on. Eventually the
code looks stable enough to be officially released as “Linux 2.6.38”, and the
process then repeats with version 2.6.39.

B In addition to Linus’ official version there are Linux versions that are main-
tained by other developers. For example, there is the “staging tree” where
new device drivers can “mature” until (after several rounds of improve-
ments) they are considered good enough to be submitted to Linus for inclu-
sion into his version. Once released, many Linux kernels receive fixes for a
certain period of time, so there can be versions like 2.6.38.1, 2.6.38.2, ….

Copyright © 2012 Linup Front GmbH

28 2 Linux and Free Software

In July, 2011, Linus summarily declared the version being prepared, 2.6.40,
“Linux 3.0”—purportedly to simplify the numbering, since there were no par-Linux 3.0

ticularly notable improvements.

B Nowadays release candidates are called 3.2-rc1 and so on, and the versions
with fixes after the original release are called 3.1.1, 3.1.2, …

The “Linux” project is by no means finished today. Linux is constantly being
extended and improved by hundreds of programmers throughout the world, who
serve several millions of satisfied private and commercial users. Neither can it be
said that the system is “only” being developed by students and other amateurs—
many people working on the Linux kernel have important positions within the
computer industry and number among the most respected professional develop-
ers around. It can be claimed with some justification that Linux is the operating
system with the most versatile hardware support in existence, not only judging by
the variety of platforms it runs on (including smartphones and giant mainframes),
but also by the availability of hardware drivers for, e. g., the Intel PC platform.
Linux also serves as a research and development vehicle for new operating sys-
tem ideas in industry and academia; it is without doubt one of the most innovative
operating systems available today.

The versatility of Linux also makes it the operating system of choice for applica-
tions like virtualisation and “cloud computing”. Virtualisation makes it possibleVirtualisation

to simulate, on a single actual (“physical”) computer, several to many “virtual”
computers which use their own operating system and look like real computers to
programs running on them. This leads to a more efficient use of resources and to
greater flexibility: The common virtualisation infrastructures make it possible to
“migrate” virtual machines very quickly from one physical machine to another,
and this lets you as the operator of such an infrastructure react very conveniently
to load situations or malfunctions. Based on this, cloud computing is the idea ofcloud computing

providing computing power “on demand” in order to allow companies to forego
running large computing centres that are only used to a full extent during short
periods of peak demand while mostly costing money otherwise. Cloud comput-
ing providers allow their customers to use virtual machines through the Internet,
charging them based on actual use, and that can lead to sizeable savings compared
to maintaining a “real” computing centre, especially when one considers that you
as a customer would otherwise have to bear not just the initial construction out-
lay, but also the personnel, materiel and energy expenses involved in running a
computing centre 24/7.

Exercises

C 2.1 [2] Search the Internet for the notorious discussion between Andrew S.
Tanenbaum and Linus Torvalds, in which Tanenbaum says he would have
failed Linus for producing something like Linux. What do you think?

C 2.2 [1] What is the version number of the oldest set of Linux kernel sources
that you can locate?

2.2 Free Or Open Source?

2.2.1 Copyright And “Free Software”

During the Middle Ages, duplication of books and other writings was an expen-
sive matter. One needed to find somebody who was able to write and had the
required time on their hands—which made larger projects like the copying of
bibles the domain of monasteries (the monks there did know how to write and
had loads of time available). The invention of the movable-type printing press
in the 16th century created a previously-unknown problem: Suddenly copying

Copyright © 2012 Linup Front GmbH

2.2 Free Or Open Source? 29

became considerably simpler and cheaper (at least as long as one had a printing
press to hand), and industrious publishers used this to copy everything they con-
sidered worth selling. Authors had nearly no rights at the time; they could be
glad if publishers paid them anything at all for printing their works. Widespread
reprinting also caused the original printers of a work to feel cheated when others
took over their publications without compensation. This led many of them to ask
the government for special privileges in order to obtain the exclusive right to pub-
lish certain works. Government didn’t object to this, since the rulers tried to keep
some control on what was being printed within their spheres of authority. With
time, these “privileges” together with other developments like the (laudable) idea
to bestow on authors the right for remuneration, mutated into the modern concept
of “copyright” (or, more generally, “author’s rights”).

Copyright essentially means that the creator of a work, i. e., the author of a
book, painter of a picture, …, has the right of determining what happens to the
work. As the author, they can bestow on (or, in practice, sell for money to) a pub-
lisher the right to print a book and put it into circulation; the publisher gets to
earn money while the author does not have to bother with printing, publicity,
shipment, etc., which serves both sides.

B In addition to these “copyrights” there are also “moral rights” like the right
to be identified as the creator of a work. It is often impossible to give these
moral rights away.

During the 20th century (roughly), the concepts of copyright were put on an in-
ternationally accepted basis and extended to other types of work such as sound
recordings and motion pictures.

The advent of computers and the Internet towards the end of the 20th century
gravely changed the situation once more: While the purpose of copyright used to
be to protect publishers from other publishers (private people were seldom in a
position to duplicate books, records, or films on a commercially relevant scale),
suddenly everybody who owned a computer was able to duplicate digital con-
tent (like software or books, music or movies in digital form) as often as desired
and without loss of quality—a disaster for publishers, music, film or software
companies, since their existing business models, which were based on the sale of
physical artefacts such as books or CDs, were endangered. Since then the “con-
tent industry” has been lobbying for tougher copyright laws and higher penalties
for “pirate copiers”, as well as trying to hold copyright infringers liable for their
infringements (with varying success).

B The current term is “intellectual property”, which includes not just copy-
rights, but also trademarks and patents. Patents are supposed to compen-
sate the inventors of technical processes for documenting and publishing
their inventions by giving them a time-limited exclusive right to exploit
these inventions (e. g., by allowing others to make use of them for money).
Trademarks ensure that nobody gets to exploit, without permission, the
popularity of a brand by selling their own products under that name. For
example, a trademark on “Coca-Cola” ensures that nobody who is able to
concoct a brownish sugar brew gets to sell this as “Coca-Cola”. The three
types of “intellectual property” are related but distinct—patents are about
ideas, copyright is about the concrete expression of ideas in the shape of
actual works, and trademarks are about stopping sleazy business practices.

B You obtain copyright for a work automatically by producing the work—at
least if the work exhibits a certain minimal creativity. Patents must be reg-
istered with the patent office and are examined for novelty. Trademarks
can also be registered or else obtained by using a mark for a certain time in
commerce and becoming identified with it by the public as the provider of
a product or service.

Computer software (which can be thought of as a type of written work, and
which incorporates possibly considerable creativity) is protected by copyright.

Copyright © 2012 Linup Front GmbH

30 2 Linux and Free Software

This means that it is, in principle, illegal to copy a program or a complete software
package without the explicit consent of the copyright holder (the programmer or
their employer).

B In the early days of the computer it was not common for software to be
sold. You were either given it together with your computer (which used to
be expensive enough—millions of dollars) or would write it yourself. On
the university scene in the 1960s and 1970s it was utterly normal to swap or
copy programs, and in 1976 a certain Bill Gates was horrified to find out that
his BASIC interpreter for the MITS Altair 8800 proved very popular indeed
and he got lots of kudos for it, but almost nobody found it necessary to pay
his asking price! Of course that wasn’t proper on the users’ part, but even
the idea that software should be paid for was so outlandish at the time that
few people actually entertained the thought.

B As computers spread through offices during the late 1970s and 1980s, it be-
came more and more common to sell software instead of giving it away. Not
only that—the software companies sold only the executable machine code,
not the source code that people would be able to examine to find out how
the software worked, or even to modify. At some point, Richard M. Stall-
man, who used to be an MIT researcher, decided to try and reverse this trend
by working on a system that would emphasise the culture of sharing that
was the norm during the 1960s and 1970s. This “GNU” system3 remains
unfinished, but many of its components are now in use on Linux systems.

Richard M. Stallman (often called “RMS” for short) can be thought of as the
father of the idea of “free software”. In this context “free” does not mean “free offree software

charge”, but that the user is “free” to do various things they would not be able or
allowed to do with proprietary software4. RMS calls a software package “free” if
four conditions, the “Four Freedoms”, are met:

• The freedom to run the program for any purpose (Freedom 0).

• The freedom to study how the program works, and change it to make it do
what you wish (Freedom 1).

• The freedom to redistribute copies so you can help your neighbor (Free-
dom 2).

• The freedom to improve the program, and release your improvements (and
modified versions in general) to the public, so that the whole community
benefits (Freedom 3).

Access to the program’s source code is a prerequisite for freedoms 1 and 3.
The idea of free software was favourably received in general, but even so the

goals of RMS and the Free Software Foundation (FSF) were often misunderstood. In
particular, companies took exception to the word “free”, which in spite of appro-
priate clarifications was often confused with “cost-free”. At the end of the 1990s,
Eric S. Raymond, Bruce Perens and Tim O’Reilly created the Open Source Initiative
(OSI), whose goal it was to provide better and less ideological marketing for free
software. The FSF wasn’t enthusiastic about this “watering down” of its ideas,
and in spite of the very similar goals of the FSF and OSI the controversy has not
died down completely even now (which to a certain degree may be due to the
considerable egos of some of the main people involved).

B While the “free” in “free software” encourages the confusion with “no
charge”, the “open source” in “open-source software” can be interpreted
such that the source code may be inspected but not modified or passed
on—both of which are basic tenets of the OSI. In this sense, neither of the
term is 100% unambiguous. The community often refers to “FOSS” (for freeFOSS

3“GNU” is a “recursive acronym” for “GNU’s Not Unix”.
4The “Free Software Foundation”, Stallman’s organisation, calls this “free as in speech, not as in

beer”.

Copyright © 2012 Linup Front GmbH

2.2 Free Or Open Source? 31

and open-source software) or even “FLOSS” (free, libre, and open-source software, FLOSS

where the libre is supposed to support the sense of “liberty”).

How to make money with free software if anyone is allowed to change and copy
the software? A very legitimate question. Here are a few ideas for “open-source
business models”: business models

• You could provide additional services such as support, documentation, or
training for free software and get paid for that (this works very well for your
author’s company, Linup Front GmbH, and the LPI seems to be able to make
a living from selling Linux certification).

• You could create bespoke improvements or extensions for specific cus-
tomers and be paid for your time (even if the result of your development
then becomes part of the generally available version). This works even for
free software that you didn’t originally write yourself.

B Within the “traditional” model of proprietary software development,
the original manufacturer of the software has a monopoly on changes
and further development. As the customer of such a company, you
could be in trouble if the manufacturer discontinues the product or
disappears outright (by going bankrupt or getting acquired and dis-
solved by a competitor), because you will have gone to great trouble
and expense to adopt a piece of software with no future. With free
software, you can always try to find somebody to take on support in
place of the original manufacturer—if necessary, you can get together
with other users of the software who don’t want to be left alone, either.

• If you distribute a software package, you could provide a basic version as
FOSS and hope that this will entice enough people to buy the proprietary
“full version” to really get things done. (The jargon expression for this is
“open core”.)

B This is a two-edged sword: On the one hand, it is of course nice if
there is more free software, but on the other hand the result is often
that you need the proprietary version because important functionality
is not available in the free version and it would be too much work to
add that functionality independently. In this case, the “free” version
mostly serves as a PR engine if the manufacturer wants to appear mod-
ern and “open-source friendly”—to “talk the talk” without “walking
the walk”.

2.2.2 Licences

How does a piece of software become “free” or “open source”? We mentioned that
certain rights—for example, the right to copy or modify a work—are reserved for
the author of the work, but that these rights can also be passed on to others. This
happens (if it happens) by way of a “licence”, a legal document which specifies licence

the rights that the receiver of the software obtains by buying, downloading, … it.
Copyright as such allows the buyer (or lawful downloader) of a software pack-

age to install that software on a computer and to start and run it. This results
simply from the fact that the software was made available to them by the author—
there is evidently no point in selling somebody a program that the buyer isn’t al-
lowed to use5. (Conversely, whoever gave the author money for the program has
a right to use the program in exchange for their payment.) Other actions such as
uncontrolled copying and distribution, or modifying the program, are explicitly
forbidden by copyright, and if the original author wants people to be allowed to
do these things they must be written into the licence.

Copyright © 2012 Linup Front GmbH

32 2 Linux and Free Software

B Proprietary programs often come with an “end-user licence agreement”end-user licence agreement

(EULA) that the buyer must accept before actually being able to use the
software. The software vendor uses the EULA to forbid the buyer to do
things the buyer would in fact be allowed to do by copyright law—such as
selling the software “used” to someone else, or to say bad things (or indeed
anything at all) about the software in public. Such an EULA is a contract
that needs to be accepted by both sides, and the legal hurdles (at least in
Germany) are fairly high. For example, a software buyer must be able to
inspect the EULA conditions before buying the software, or it must at least
be possible to return the software unused for a full refund if the buyer does
not agree with the EULA.

B On the other hand, the open-source licences for FLOSS are used to let theopen-source licences

receiver of the software perform actions that would otherwise be forbidden
by copyright. They generally do not try to restrict use of the software, but for
the most part govern questions of modifying and distributing the software.
In that sense they do not leave the software receiver worse off than they
would have to expect from the sale of any other good. Hence, unlike EU-
LAs, free-software licenses are usually not contracts that the receiver must
explicitly accept, but one-sided declarations on the part of the software au-
thor, and the rights conferred by them constitute extra benefits on top of the
simple usage rights inherent in the law.

By now there is a whole zoo of licences fulfilling the basic requirements for free
or open-source software. The best-known free-software licence is the General Pub-
lic License (GPL) promulgated by Richard M. Stallman, but there are several others.
The OSI “certifies” licences that according to its opinion embody the spirit of open
source, just as the FSF approves licences that safeguard the “four freedoms”. Lists
of approved licences are available from those organisations’ web pages.

B If you consider starting a free or open-source software project, you are cer-
tainly free to come up with your own licence fulfilling the requirements of
the FSF or OSI. However, it is usually better to adopt an existing licence that
has already been approved. This means that you do not need to obtain ap-
proval for your licence from the FSF or OSI, and the existing licences have
usually been examined by legal professionals and can be considered rea-
sonably water-tight—as an amateur in contract or intellectual property law
you might overlook important details that could get you in trouble later on.

It is important to observe that the proponents of free or open-source software inFOSS and copyright

no way intend to completely abolish copyright for software. In fact, free software
as we know it can only work because copyright gives software authors the legal
right to make the modification and distribution of their software contingent upon
conditions such that the receiver of the software must also be given the right to
modify and distribute it. Without copyright, everybody could help themselves
to any available piece of software, and central tenets such as the “four freedoms”
would be endangered because it would be possible for people to hoard without
any sharing at all.

2.2.3 The GPL

The Linux kernel and large parts of what one would otherwise consider “Linux”
is distributed under the General Public License (GPL). The GPL was developed by
RMS for the GNU project and is supposed to ensure that software that was orig-
inally distributed under the GPL remains under the GPL (this type of licence is
also referred to as a copyleft licence). This works approximately like this:

5In fact, the copyright laws of many countries contain explicit clarifications stating that the process
of copying a program from disk into RAM in order to run it on the computer is not subject to copyright.

Copyright © 2012 Linup Front GmbH

2.2 Free Or Open Source? 33

• GPL software must be available in source form and may be used for arbi-
trary purposes.

• It is expressly allowed to modify the source and to distribute it in unmodi-
fied or modified form, as long as the receiver is given the same rights under
the GPL.

• It is also expressly allowed to distribute (or even sell) GPL software in exe-
cutable form. In this case, the source code (including the GPL rights) must
be furnished alongside the executables, or must, during a certain period of
time, be made available upon request.

B “Source code” in this context means “everything necessary to get the
software to run on a computer”. What that means in a particular
case—for example, if it includes the cryptographic keys necessary
to start a modified Linux kernel on an appropriately “locked-down”
computer—is the subject of heated discussion.

B If somebody buys GPL software for money, they naturally obtain the
right not just to install that software on all their computers, but also to
copy and resell it (under the GPL). One consequence of this is that it
does not make a lot of sense to sell GPL software “per seat”, but one
important side benefit is that prices for, e. g., Linux distributions stay
reasonable.

• If you write a new program incorporating (parts of) a GPL program, the
new program (a “derived work”) must also be placed under the GPL.

B Here, too, there is heated debate as to how much and which parts of a
GPL program must be incorporated into another program to make that
program a “derived work”. According to the FSF, using a dynamically
loadable GPL library within a program forces that program under the
GPL, even if it does not by itself contain any GPL code and therefore
cannot be considered a “derived work” in the legal sense. How much
of this is wishful thinking and how much is actually legally tenable
must, in principle, be determined in a court of law.

The GPL stipulates rules for modifying and distributing software, not its actual
use.

B Right now two versions of the GPL are in widespread use. The newer ver-
sion 3 (also called “GPLv3”) was released at the end of June, 2007, and GPLv3

differs from the older version 2 (also “GPLv2”) by clarifications in areas
such as software patents, the compatibility with other free licences, and
the introduction of restrictions on trying to make changes to theoretically
“free” software within devices impossible through special hardware (“tivoi-
sation”, after a Linux-based digital PVR whose kernel cannot be modified
or replaced). The GPLv3 allows its users to add further terms.—The GPLv3
did not meet with universal approval within the community, hence many
projects (most prominently, the Linux kernel) have deliberately stayed with
the simpler GPLv2. In addition, many projects distribute their code under
“the GPLv2 or any later version”, so you can decide which version of the
GPL to follow when distributing or modifying such software.

B It is considered good style among the developers of free software to make
contributions to a project under the same licence that the project is already
using, and most projects insist on this at least for code to be incorporated in
the “official” version of the software. Some projects even insist on copyright
assignments, where the author of code gives their rights to the project (or a
suitable organisation). The advantage of this step is that copyright in the

Copyright © 2012 Linup Front GmbH

34 2 Linux and Free Software

code rests solely with the project, and that copyright infringement—which
only the copyright holder has legal standing to go after—is easier to address.
A side effect that is either wanted or explicitly undesirable is that it becomes
easier to change the licence for the whole project, which is also something
only the copyright holder is allowed to do.

B In the case of the Linux kernel project, which explicitly does not require
copyright assignment, a licence change is difficult or impossible, since the
code is a patchwork of contributions from more than a thousand authors.
The issue was discussed during the introduction of the GPLv3, and the
developers agreed that it would be a gigantic project to sort out the legal
provenance of every single line of the Linux kernel source code and obtain
its authors’ consent for a licence change. Some Linux developers would
be adamantly opposed, while others cannot be located or may even be de-
ceased, and the corresponding code would have to be replaced by some-
thing similar with a clear copyright. However, at least Linus Torvalds re-
mains a supporter of the GPLv2, so the problem does not really arise in
practice.

The GPL does not stipulate anything concerning the possible price of the prod-GPL and money

uct. It is completely legal to give away copies of GPL software or to ask for money,
as long as you furnish source code or make it available on request and as long as
the receiver also gets the GPL rights. This means that GPL software is not neces-
sarily “freeware”.

You can find out more by studying the GPL [GPL91], which must be distributed
with each GPL-ed product (including Linux).

The GPL is considered the most consistent of free licences in the sense that—as
we said—it tries to ensure that, once published under the GPL, code must remain
free. On various occasions companies tried to incorporate GPL code into their
own products that they were not about to release under the GPL. However, after
being sternly reprimanded by (most often) the FSF as the copyright holder, these
companies have come into compliance with the GPL. At least in Germany, the
GPL has also been validated in court—a Linux kernel programmer could obtain
judgement in the Frankfurt district court against D-Link (a manufacturer of net-
working components, in this case a Linux-based NAS device), which he had sued
for not complying with the GPL when distributing their device [GPL-Urteil06].

B Why does the GPL work? Some companies which considered the GPL re-
strictions onerous have tried to declare, or get it declared, invalid. For ex-
ample, in the United States it was termed “un-American” or “unconstitu-
tional”, and in Germany a company tried to use antitrust law to invalidate
the GPL since it supposedly implied illegal price fixing. The idea seems to
be that GPL software can be used by anyone for anything if something is
demonstrably wrong with the GPL. All of these attacks ignore one impor-
tant fact: Without the GPL, nobody except the original author would have
the right to do anything with the code, since actions such as distributing
or, in fact, selling the software are reserved by copyright law. So if the GPL
disappears, all other parties interested in the code are a lot worse off than
before.

B A lawsuit where a software author sues a company that distributes his GPL
code without complying with the GPL would approximately look like this:

Judge What seems to be the problem?
Software Author Your Lordship, the defendant has distributed my soft-

ware without a licence.
Judge (to the defendant’s counsel) Is that so?

At this point the defendant can say “yes”, and the lawsuit is essentially over
(except for the verdict). They can also say “no” but then it is up to them

Copyright © 2012 Linup Front GmbH

2.2 Free Or Open Source? 35

to justify why copyright law does not apply to them. This is an uncom-
fortable dilemma and the reason why few companies actually do this to
themselves—most GPL disagreements are settled out of court.

B If a manufacturer of proprietary software violates the GPL (e. g., by includ-
ing a few hundreds of lines of source code from a GPL project in their prod-
uct), this does not imply that all of that product’s code must now be released
under the terms of the GPL. It only implies that they have distributed GPL
code without a license. The manufacturer can solve this problem in various
ways:

• They can remove the GPL code and replace it by their own code. The
GPL then becomes irrelevant for their software.

• They can negotiate with the GPL code’s copyright holder (if available
and willing to go along) and, for instance, agree to pay a license fee.
See also the section on multiple licenses below.

• They can release their entire program under the GPL voluntarily and
thereby comply with the GPL’s conditions (the most unlikely method).

Independently of this there may be damages payable for the prior violations.
The copyright status of the proprietary software, however, is not affected in
any way.

2.2.4 Other Licences

In addition to the GPL, other licences are popular in the context of FOSS. Here is
a brief overview:

BSD licence The BSD licence originated with the University of California in
Berkeley’s Unix distribution and is intentionally kept very simple: The
recipient of the software is basically allowed to do with the software what-
ever they want as long as they do not create the impression that their use
is endorsed by the university (or, by extension, the original software au-
thor). Any liability for the program is excluded as far as possible. The
licence text must be preserved within the program’s source code and—if
the program or modified versions are distributed in executable form—its
documentation.

B If a software package contained BSD-licenced code, the BSD licence
used to require that any promotional material for the software or sys-
tem in question mention this fact and the copyright holder. This “ad-
vertising clause” has since been dropped.

Unlike the GPL, the BSD licence does not try to keep the software’s source
code public. Whoever obtains BSD-licenced software can essentially inte-
grate it into their own software and distribute that in binary form (the GPL
would require them to also distribute corresponding source code under the
GPL).

B Commercial software companies like Microsoft or Apple, who are gen-
erally less than enthusiastic about GPL software, usually have no issues
with BSD-licenced software. Windows NT, for example, used to con-
tain TCP/IP networking code from BSD (in adapted form), and large
parts of the Macintosh’s OS X operating system kernel are derived from
BSD.

B Within the FOSS community, opinions have differed for a long time as
to whether the GPL or the BSD licence is “more free”. On the one hand
it makes sense to state that, as a recipient, one can do more with BSD-
licenced software, and that therefore the BSD licence conveys more

Copyright © 2012 Linup Front GmbH

36 2 Linux and Free Software

freedom in absolute terms. The GPL proponents on the other hand
say that it is more important for code to stay free for everybody to use
rather than disappear within proprietary systems, and that an indica-
tion of the greater freedom of the GPL is that those who obtain code
from the pool of GPL software are also forced to give something back.

Apache licence The Apache licence is like the BSD licence in that it allows the
use and adoption of licenced code without requiring (like the GPL) that
modified Apache-licenced code must be made available to the public. It is
more complex than the BSD licence, but also contains clauses governing use
of patents and trademarks and other details.

Mozilla Public License (MPL) The Mozilla licence (which applies to the Firefox
browser, among other software package) is a mixture of the BSD licence and
the GPL. It is a “weak copyleft licence”, since on the one hand it requires that
code obtained under the MPL must be distributed under the MPL if at all
(like the GPL), but also allows adding code under other licences which does
not need to be distributed under the MPL.

The success of the FOSS community encouraged the law professor, LawrenceCreative Commons

(Larry) Lessig to apply the concept to other works in addition to software. The
goal was to increase the pool of cultural assets like books, images, music, films, …
that would be available to others for free use, modification and distribution. Since
the common FOSS licences are mostly geared towards software, a set of creative-
commons licences was developed to enable creators to donate their works to the
public in a controlled fashion. They can stipulate various restrictions like “ver-
batim reproduction of the work only”, “modifications are allowed but (GPL-like)
recipients of the modified work must be allowed to make further modifications”
or an exclusion of commercial use of the work.

The “public domain” applies to cultural works that no longer fall under copy-public domain

right. While in the Anglo-Saxon legal tradition a creator may explicitly place a
work (such as a piece of software) in the public domain by disclaiming all rights
to it, this is not possible in other legal environments. For example, in Germany,
works enter the public domain automatically 70 years after the last person in-
volved in their creation has died. We shall have to wait a bit for the first computer
program to become available to everyone in this way.

B There is a fair chance that no copyrighted works created after approximately
1930 will ever enter the public domain. In the United States, Congress ex-
tends the copyright term whenever the copyright on a certain cartoon mouse
is in danger of expiry, and the rest of the world is generally happy to follow
suit. It is not entirely clear why Walt Disney’s great-grandchildren ought to
be able to rake in money like Scrooge McDuck based on the great artist’s
creativity, but as usual this mostly depends on who has the most influential
lobbyists.

In principle, the copyright holder of a software package can also distribute theMultiple licences

package under several licences simultaneously—for example, the GPL for FOSS
developers and a proprietary licence for companies which would rather not make
their own source code available. Of course this makes most sense for libraries
that other programmers can integrate in their own programs. Whoever wants to
develop proprietary software can then “buy themselves out of” the GPL’s restric-
tions.

Exercises

C 2.3 [!2] Which of the following statements concerning the GPL are true and
which are false?

1. GPL software may not be sold.

Copyright © 2012 Linup Front GmbH

2.3 Important Free Software 37

2. GPL software may not be modified by companies in order to base their
own products on it.

3. The owner of a GPL software package may distribute the program un-
der a different license as well.

4. The GPL is invalid, because one sees the license only after having ob-
tained the software package in question. For a license to be valid, one
must be able to inspect it and accept it before acquiring the software.

C 2.4 [2] Compare the FSF’s “four freedoms” to the Debian Free Software Guide-
lines (http://www.debian.org/social_contract#guidelines) of the Debian project
(see Section 2.4.4). Which definition of free software do you like better and
why?

2.3 Important Free Software

2.3.1 Overview

Linux is a powerful and elegant operating system, but the nicest operating sys-
tem is worth nothing without programs to run on it. In this section we present a
selection of the most important free/open-source programs that can be found on
typical Linux PCs.

B If a particular program is not included that does not imply that we don’t
think it’s worthwhile. Space is limited, and we try to cover mostly those
software packages that the LPI mentions in its exam objectives (just in case).

2.3.2 Office and Productivity Tools

Most computers are probably used for “office applications” like writing letters
and memos, seminar papers or Ph. D. theses, the evaluation of data using spread-
sheets and graphics packages and similar jobs. Users also spend large parts of
their computer time on the Internet or reading or writing e-mail. No wonder that
there is a lot of good free software to help with this.

B Most of the programs in this section aren’t just for Linux, but are also avail-
able for Windows, OS X or even other Unix variants. This makes it possible
to gradually move users into a FOSS ecosystem by installing, e. g., Libre-
Office, Firefox, and Thunderbird on a Windows PC in place of Microsoft
Office, Internet Explorer, and Outlook, before replacing the operating sys-
tem itself with Linux. If you play your cards right6, the users might not even
notice the difference.

OpenOffice.org has been the FOSS community’s flagship big office-type appli-
cation for years. It started many years ago as “StarOffice” and was even-
tually acquired by Sun and made available as free software (in a slightly
slimmed-down package). OpenOffice.org contains everything one would
expect from an office package—a word processor, spreadsheet, presenta-
tion graphics program, business chart generator, database, …—and can also
handle (in a fashion) the file formats of its big competitor from Microsoft.

LibreOffice After Sun was taken over by Oracle and the future of OpenOffice.org
was up in the air, some of the main OpenOffice.org developers banded to-
gether and published their own version of OpenOffice.org under the name
of “LibreOffice”. Both packages are currently maintained side by side (Or-
acle donated OpenOffice.org to the Apache Software Foundation)—not the
optimal state, but it is unclear whether and how there will be a “reunifica-
tion”.

6For example, you could plant the current Ubuntu on your users as a “Windows 8 beta” …

Copyright © 2012 Linup Front GmbH

38 2 Linux and Free Software

B By now, most major Linux distributions contain LibreOffice, which is
more aggressively developed and—more importantly—cleaned up.

Firefox is by now the most popular web browser and is being distributed by the
Mozilla Foundation. Firefox is more secure and efficient than the former
“top dog” (Mircosoft’s Internet Explorer), does more and conforms better
to the standards governing the World Wide Web. In addition, there is a
large choice of extensions with which you can customise Firefox according
to your own requirements.

Chromium is the FOSS variant of the Google browser, Chrome. Chrome has re-
cently started competing with Firefox—Chrom{e,ium} is also a powerful,
secure browser with various extensions. Especially Google’s web offerings
are geared towards the Google browser and support it very well.

Thunderbird is an e-mail program by the Mozilla Foundation. It shares large
parts of its underlying infrastructure with the Firefox browser and—like
Firefox—offers are large pool of extensions for various purposes.

2.3.3 Graphics and Multimedia Tools

Graphics and multimedia has long been the domain of Macintosh computers
(even though the Windows side of things has to offer nice software, too). Admit-
tedly, Linux is still missing true equivalents to programs like Adobe’s Photoshop,
but the existing software is also nothing to scoff at.

The GIMP is a program for editing photographs and similar images. It is not
quite up to par with Photoshop (for example, some pre-press functionality
is missing) but is absolutely usable for many purposes and even offers a
few tools for jobs such as creating graphics for the World Wide Web that
Photoshop does not do as conveniently.

Inkscape If The GIMP is Linux’s Photoshop, then Inkscape corresponds to
Illustrator—a powerful tool for creating vector-based graphics.

ImageMagick is a software package that allows you to convert almost any
graphic format into nearly every other one. It also enables script-controlled
manipulation of images in endless different ways. It is wonderful for web
servers and other environments where graphics need to be processed with-
out a mouse and monitor.

Audacity serves as a multi-track recorder, mixing desk and editing station for
audio data of all kinds and is also popular on Windows and the Mac.

Cinelerra and other programs like KDEnlive or OpenShot are “non-linear video
editors” that can edit and dub video from digital camcorders, TV receivers,
or webcams, apply various effects and output the result in various formats
(from YouTube to DVD).

Blender is not just a powerful video editor, but also allows photorealistic “render-
ing” of three-dimensional animated scenes and is hence the tool of choice
for creating professional-quality animated films.

B We might just as well mention here that today no Hollywood block-
buster movie is produced without Linux. The big studios’ special
effects “render farms” are now all based on Linux.

Copyright © 2012 Linup Front GmbH

2.3 Important Free Software 39

2.3.4 Internet Services

Without Linux, the Internet would not be recognisable: Google’s hundreds of
thousands of servers run Linux just as the trading systems of most of the world’s
big stock exchanges (the German exchange as well as the London and New York
stock exchanges), since the required performance can only be made available with
Linux. In point of fact, most Internet software is developed on Linux first, and
most university research in these areas takes place on the open-source Linux plat-
form.

Apache is by far the most popular web server on the Internet—more than half of
all web sites run on an Apache server.

B There are of course other good web servers for Linux—for example,
Nginx or Lighttpd—, but Apache remains the most common.

MySQL and PostgreSQL are freely available relational database servers. MySQL
is best used for web sites, while PostgreSQL is an innovative and high-
performance database server for all kinds of purposes.

Postfix is a secure and extremely powerful mail server which is useful for any
environment from the “home office” to large ISPs or Fortune 500 enterprises.

2.3.5 Infrastructure Software

A Linux server can prove very useful within a local-area network: It is so reliable,
fast, and low-maintenance that it can be installed and forgotten (except for regular
backups, of course!).

Samba turns a Linux machine into a server for Windows clients which makes disk
space and printers available to all Windows machines on the network (Linux
machines, too). With the new Samba 4, a Linux server can even serve as an
Active Directory domain controller, making a Windows server extraneous.
Reliability, efficiency and saved licence fees are very convincing arguments.

NFS is the Unix environment to Samba and allows other Linux and Unix ma-
chines on the network access to a Linux server’s disks. Linux supports the
modern NFSv4 with enhanced performance and security.

OpenLDAP serves as a directory service for medium and large networks and
offers a large degree of redundancy and performance for queries and up-
dates through its powerful features for the distribution and replication of
data.

DNS and DHCP form part of the basic network infrastructure. With BIND,
Linux supports the reference DNS server, and the ISC DHCP server can
cooperate with BIND to provide clients with network parameters such as
IP addresses even in very large networks. Dnsmasq is an easy-to-operate
DNS and DHCP server for small networks.

2.3.6 Programming Languages and Development

From its beginnings, Linux has always been a system by developers for develop-
ers. Accordingly, compilers and interpreters for all important programming lan-
guages are available—the GNU compiler family, for example, supports C, C++,
Objective C, Java, Fortran and Ada. Of course the popular scripting languages
such as Perl, Python, Tcl/Tk, Ruby, Lua, or PHP are supported, and less common
languages such as Lisp, Scheme, Haskell, Prolog, or Ocaml, are also part of many
Linux distributions.

A very rich set of editors and auxiliary tools makes software development a
pleasure. The standard editor, vi is available as are professional development en-
vironments such as GNU Emacs or Eclipse.

Copyright © 2012 Linup Front GmbH

40 2 Linux and Free Software

Linux is also useful as a development environment for “embedded systems”,
namely computers running inside consumer appliances that are either based on
Linux itself or use specialised operating systems. On a Linux PC, it is straightfor-
ward to install a compiler environment that will generate machine code for, say,
ARM processors. Linux also serves to develop software for Android smartphones,
and professional tools for this purpose are supplied for free by Google.

Exercises

C 2.5 [!1] Which FOSS programs have you heard about? Which ones have you
used yourself? Do you find them better or worse than proprietary alterna-
tives? If so, why? If not, why not?

2.4 Important Linux Distributions

2.4.1 Overview

If someone says something like “My PC runs Linux”, they usually mean not (just)
Linux, the operating system kernel, but a complete software environment based
on Linux. This normally includes the shell (bash) and command-line tools from the
GNU project, the X.org graphics server and a graphical desktop environment such
as KDE or GNOME, productivity tools like LibreOffice, Firefox or The GIMP and
lots of other useful software from the previous section. Of course it is possible
to assemble all these tools from their original sources on the Internet, but most
Linux users prefer a pre-made software collection or “Linux distribution”.

B The first Linux distributions appeared in early 1992—however, none of
those is still being developed, and they are mostly forgotten. The oldest
distribution that is still being worked on is Slackware, which first appeared
in July, 1993.

There is a multitude of Linux distributions with different goals and approaches
and different organisational structure. Some distributions are published by com-
panies and possibly only sold for money, while other distributions are put together
by teams of volunteers or even individuals. In this section we shall be discussing
the most important general-purpose distributions.

B If we do not mention your favourite distribution here this isn’t due to the
fact that we can’t abide it, but really due to the fact that our space and time
is limited and we must (unfortunately!) restrict ourselves to essentials (no
pun intended). If a distribution isn’t on our list that doesn’t imply that it is
bad or useless, but only that it isn’t on our list.

B The “DistroWatch” web site (http://distrowatch.com/) lists the most impor-
tant Linux distributions and serves as a focal point for distribution-oriented
news. Right now it contains 317 distributions (that is three hundred and
seventeen!), but by the time you’re reading this, this number is probably no
longer correct.

2.4.2 Red Hat

Red Hat (http://www.redhat.com/) was established in 1993 as “ACC Corporation”,
a distribution company for Linux and Unix accessories. In 1995, the company
founder, Bob Young, bought the business of Marc Ewing, who in 1994 had pub-
lished a Linux distribution called “Red Hat Linux”, and changed the name of his
corporation to “Red Hat Software”. In 1999, Red Hat went public and is by now
probably the largest corporation solely based on Linux and open-source software.
It is part of the “Standard & Poor’s 500”, a stock index which serves as an indicator
for the US economy.

Copyright © 2012 Linup Front GmbH

2.4 Important Linux Distributions 41

Red Hat has withdrawn from its original individual-customer business (the
last “Red Hat Linux” was published in April, 2004) and now markets a
distribution for the professional use by companies under the name of “Red
Hat Enterprise Linux” (RHEL). RHEL is licenced per server, although you
do not pay for the software—which is furnished under the GPL and similar
FOSS licences—but for access to timely updates and support in the case of
problems. RHEL is mostly geared towards data centres and, among other
things, supports (with appropriate additional tools) the construction of
fault-tolerant “clusters”.

“Fedora” (http://www.fedoraproject.org/) is a distribution, mostly controlled
by Red Hat, which serves as a “test bed” for RHEL. New software and ideas
are trialled in Fedora first, and whatever proves useful may show up in
RHEL sooner or later. Unlike RHEL, Fedora is not sold but made available
for free download instead; the project is governed by a committee whose
members are partly elected by the developer community and partly nomi-
nated by Red Hat. (The committee chair is nominated by Red Hat and has
veto powers.) For many Fedora users, the focus on current software and
new ideas is part of the attraction of the distribution, even though this im-
plies frequent updates. Fedora is less suitable for beginners and the use on
servers which are supposed to be reliable.

Since Red Hat distributes its software strictly under FOSS licences like the
GPL, it is possible in principle to operate a system that corresponds to the current
RHEL without paying licence fees to Red Hat. There are distributions like CentOS CentOS

(http://www.centos.org/) or Scientific Linux (https://www.scientificlinux.org/) which Scientific Linux

are essentially based on RHEL but remove all Red Hat branding. This means that
you get essentially the same software but without Red Hat support.

B CentOS in particular is so close to RHEL that Red Hat is happy to sell you
support for your CentOS machines. You don’t even need to install RHEL
first.

2.4.3 SUSE

The German company SUSE was first incorporated 1992 as a Unix consultancy Foundation

under the name of “Gesellschaft für Software- und System-Entwicklung” and ac-
cordingly spelled itself “S.u.S.E.”. One of its products was a German version of
Patrick Volkerding’s Linux distribution, Slackware, which in turn was derived
from the first complete Linux distribution, Softlanding Linux System or SLS. S.u.S.E.
Linux 1.0 appeared 1994 and slowly diverged from Slackware by taking on fea-
tures from Red Hat Linux, like RPM package management or the /etc/sysconfig

file. The first version of S.u.S.E. Linux that no longer looked like Slackware was
version 4.2 of 1996. SuSE (the dots had disappeared at some point) soon became
the leading German-language Linux distribution and published SuSE Linux as
a “boxed set” in two flavours, “Personal” and “Professional”—the latter was no-
ticeably more expensive and contained, among other things, more server-oriented
software.

In November, 2003, the US software company, Novell, announced its takeover Novell takeover

of SuSE for 210 million dollars; the deal was concluded in January, 2004. (At this
point the “U” was capitalised, too.) In April, 2011, Novell, including SUSE, was
acquired by Attachmate, a company selling terminal emulation, system monitor- Attachmate

ing, and application integration tools and services that so far had not been notable
within the Linux and open-source communities. Since then, Novell has continued
to operate as two separate business units, one of which is SUSE.

Like Red Hat, SUSE offers an “enterprise Linux”, the SUSE Linux Enterprise
Server (SLES, http://www.suse.com/products/server/), which resembles RHEL
in that it is published fairly infrequently and promises a long life cycle of

Copyright © 2012 Linup Front GmbH

42 2 Linux and Free Software

elect

Vol
unt

eer
s

Project leader

Technical committee Project secretary

Officers

appoints appoints

Release team

FTP masters

Security team

Press contacts

Administrators

etc.

Delegates

Developers

appoints/approves

Users

approve

Maintainers / porters

etc.

etc.CD team

Web/list/...masters

Policy group

Quality assurance

Documentation / i18n teams

Software in the

Public Interest

(SPI)

DAM NM team / advocates applicants
apply

Figure 2.2: Organizational structure of the Debian project. (Graphic by Martin F. Krafft.)

7–10 years. In addition, there is SUSE Linux Enterprise Desktop (SLED), a
distribution which is intended to be used on desktop workstations. SLES
and SLED differ in the choice of packages included; with SLES, the focus is
on server software, while SLED is geared more towards interactive software.

SUSE, too, has opened its “private customer” distribution and made it
freely available as “openSUSE” (http://www.opensuse.org/)—in former times
the distribution would only have been made available for download several
months after it had been released on optical media. Unlike Red Hat, SUSE
still offers a “boxed set” that also contains proprietary software. Unlike
Fedora, openSUSE is a serious platform which still uses a fairly brief life
cycle.

A notable property of SUSE distributions is “YaST”, a comprehensive graphicalYaST

system administration tool.

2.4.4 Debian

Unlike the two big Linux distribution companies Red Hat and Novell/SUSE, the
Debian project (http://www.debian.org/) is a collaboration of volunteers whose goalDebian project

is to make available a high-quality Linux distribution called “Debian GNU/Linux”.
The Debian project was announced on 16 August 1993 by Ian Murdock; the name
is a contraction of his first name with that of his then-girlfriend (now ex-wife)
Debra (and is hence pronounced “debb-ian”). By now the project includes more
than 1000 volunteers.

Debian is based on three documents:

• The Debian Free Software Guidelines (DFSG) define which software the project
considers “free”. This is important, since only DFSG-free software can be
part of the Debian GNU/Linux distribution proper. The project also dis-
tributes non-free software, which is strictly separated from the DFSG-free

Copyright © 2012 Linup Front GmbH

2.4 Important Linux Distributions 43

software on the distribution’s servers: The latter is in a subdirectory called
main, the former in non-free. (There is an intermediate area called contrib;
this contains software that by itself would be DFSG-free but does not work
without other, non-free, components.)

• The Social Contract describes the project’s goals.

• The Debian Constitution describes the project’s organisation (see Figure 2.2.

At any given time there are at least three versions of Debian GNU/Linux: versions

New or corrected versions of packages are put into the unstable branch.
If, for a certain period of time, no grave errors have appeared in a pack-
age, it is copied to the testing branch. Every so often the content of test-

ing is “frozen”, tested very thoroughly, and finally released as stable. A
frequently-voiced criticism of Debian GNU/Linux is the long timespan be-
tween stable releases; many, however, consider this an advantage. The De-
bian project makes Debian GNU/Linux available for download only; media
are available from third-party vendors.

By virtue of its organisation, its freedom from commercial interests, and its
clean separation of free and non-free software, Debian GNU/Linux is a sound
basis for derivative projects. Some of the more popular ones include Knoppix (a derivative projects

“live CD” which makes it possible to test Linux on a PC without having to install
it first), SkoleLinux (a version of Linux especially adapted to the requirements
of schools), or commercial distributions such as Xandros. Limux, the desktop
Linux variant used in the Munich city administration, is also based on Debian
GNU/Linux.

2.4.5 Ubuntu

One of the most popular Debian derivatives is Ubuntu, which is provided by Ubuntu

the British company, Canonical Ltd., founded by the South African entrepreneur
Mark Shuttleworth. (“Ubuntu” is a word from the Zulu language and roughly
means “humanity towards others”.) The Ubuntu goals of Ubuntu is to offer, based Ubuntu goals

on Debian GNU/Linux, a current, capable, and easy-to-understand Linux which
is updated at regular intervals. This is facilitated, for example, by Ubuntu being
offered on only three computer architectures as opposed to Debian’s ten or so, and
by restricting itself to a subset of the software offered by Debian GNU/Linux.

Ubuntu is based on the unstable branch of Debian GNU/Linux and uses,
for the most part, the same tools for software distribution, but Debian
and Ubuntu software packages are not necessarily mutually compatible.
Ubuntu is published on a fairy reliable six-month cycle, and every two
years there is an “LTS” or “long-term support” version for which Canonical
promises five years’ worth of updates.

Some Ubuntu developers are also active participants in the Debian project, Ubuntu vs. Debian

which ensures a certain degree of exchange. On the other hand, not all Debian
developers are enthusiastic about the shortcuts Ubuntu takes every so often in
the interest of pragmatism, where Debian might look for more comprehensive so-
lutions even if these require more effort. In addition, Ubuntu does not appear to
feel as indebted to the idea of free software as does Debian; while all of Debian’s
infrastructure tools (such as the bug management system) are available as free
software, this is not always the case for those of Ubuntu.

Ubuntu not only wants to provide an attractive desktop system, but also to Ubuntu vs. SUSE/Red Hat

take on the more established systems like RHEL or SLES in the server space, by
offering stable distributions with a long life cycle and good support. It is unclear
how Canonical Ltd. intends to make money in the long run; for the time being the
project is mostly supported out of Mark Shuttleworth’s private coffers, which are
fairly well-filled since he sold his Internet certificate authority, Thawte, to Verisign
…

Copyright © 2012 Linup Front GmbH

44 2 Linux and Free Software

2.4.6 Others

In addition to the distributions we mentioned there are many more, such as
Mandriva Linux (http://www.mandriva.com/en/linux/) or Turbolinux (http://www.
turbolinux.com/) as smaller competitors of Red Hat and SUSE, Gentoo Linux
(http://www.gentoo.org/) as a distribution focused on source code, various “live
systems” for different purposes ranging from firewalls to gaming or multimedia
platforms, or very compact systems usable as routers, firewalls or rescue systems.

Also worth mentioning if only because of the number of “installed systems” is
Android, which with a grain of salt can be considered a “Linux distribution”. An-Android

droid consists of a Linux operating system kernel with a user space environment
maintained by Google and based on Google’s version of Java (“Dalvik”) instead
of the usual environment based on GNU, X, KDE, etc. that forms the basis of
most “normal” distributions. An Android smartphone or tablet presents itself
to the user completely unlike a typical Linux PC running openSUSE or Debian
GNU/Linux, but is still arguably a Linux system.

B While most Android users buy their system preinstalled on their phone or
tablet and then never change it, most Android-based devices make it possi-
ble (sometimes with hacks) to install an alternative Android “distribution”,
of which there are several. For many devices this is the only way of obtain-
ing up-to-date Android versions, if the device manufacturer and/or tele-
phone service provider do not deem it necessary to publish an official new
version.

2.4.7 Differences and Similarities

Even though there is a vast number of Linux distributions, at least the major dis-Similarities

tributions turn out to be fairly similar in daily life. This is partly due to their use
of the same basic programs—for example, the command-line interpreter is almost
always bash. On the other hand there are standards that try to curb rank growth.
These include the Filesystem Hierarchy Standard (FHS) or the Linux Standard Base
(LSB), which attempts to codify a unified “base version” of Linux to make it easier
for third-party software suppliers to distribute their software for as many Linux
distributions as possible.

B Unfortunately, LSB did not turn out to be the unmitigated success that it was
supposed to be—it was often misunderstood as a method for slowing down
or stopping innovation in Linux and reducing diversity (even though most
distributions make it possible to provide an LSB environment in parallel to,
and independently of, the actual environment for software furnished by the
distribution), while the third-party suppliers who were supposed to be tar-
geted in the first place generally preferred to “certify” their software pack-
ages for the main “enterprise distributions” like RHEL and SLES, and sup-
porting only these platforms. While it is definitely not unlikely that it will
be possible to run (or get to run) SAP or Oracle on, say, Debian GNU/Linux,
the cost involved in licencing large commercial software packages like these
are such that the licence fees for RHEL and SLES do not make a noticeable
difference in the bottom line.

One noticeable area where distributions differ is the method used to adminis-Packaging formats

ter (install and remove) software packages, and following on from that the file for-
mat of pre-made software packages within the distribution. There are currently
two main approaches, namely the one by Debian GNU/Linux (“deb”) and the one
originally developed by Red Hat (“rpm”). As usual, neither of the two is clearly
superior to the other, but either has enough strong points to keep its proponents
from changing over. The deb approach is used by Debian GNU/Linux, Ubuntu,
and other Debian derivatives, while Red Hat, SUSE, and various distributions de-
rived from those rely on rpm.

Copyright © 2012 Linup Front GmbH

2.4 Important Linux Distributions 45

Table 2.1: Comparison of the most important Linux distributions (as of February, 2012)

RHEL Fedora SLES openSUSE Debian Ubuntu
Supplier Red Hat Red Hat SUSE SUSE/Comm Debian Canonical

+ Comm. + Comm. Project +Comm.
Target Enterp. Geeks Enterp. Private Ent/Priv Ent/Priv
Fees due? yes no Support no no no
First pub 2003 2003 2000 2006 1993 2004
Rel cycle 3–4 yrs ≈ 6 mth. 3–4 yrs 8 months ≈ 2 yrs 6 mth
Life cyc 10 yrs ≈ 1 yr 7 yrs. 18 months 3–4 yrs 5 yrs (LTS)
Platforms 6 2 5 2 10 3
Pkges (appr.) 3000 26.000 ? 14.650 29.050 37.000
Pkg format rpm rpm rpm rpm deb deb

Live media? ? yes no yes yes yes

B Both approaches include the comprehensive management of “dependen- dependencies

cies” between software packages, which helps ensure the consistency of the
system and to prevent the removal of software packages that other packages
in the system rely on (or, conversely, to enforce their installation if another
package being installed requires them and they are not installed already).

B While users of Windows and OS X are used to obtaining software from a
variety of sources7, at least the large distributions like Debian, openSUSE, or
Ubuntu attempt to provide their users with a very comprehensive selection
of software directly via the package administration tools. These allow access
to the distributions’ “repositories” and offer search functions (of varying repositories

quality) for particular software packages which can then be conveniently
installed, possibly together with their dependencies, over the network.

It is important to note that it is not necessarily possible to exchange packages be-
tween distributions, even if these use the same basic packaging format (deb or
rpm)—the packages contain various assumptions on how a distribution is put to-
gether which by far exceed the packaging format. It is not completely infeasible
(Debian GNU/Linux and Ubuntu, for example, are similar enough that under
the right circumstances it may be quite possible to install a Debian package on
an Ubuntu system or vice-versa) but, as a rule of thumb, the deeper a package is
rooted inside the system, the larger the chance of trouble occurring—a package
that just contains a few executables and their documentation is likely to present
fewer problems than a system service that must be integrated into the machine’s
startup sequence. If in doubt, refrain from experiments with an uncertain out-
come.

Table 2.1 shows an overview of the most important Linux distributions. For
more information, consult DistroWatch or the individual distributions’ web sites.

7However, Apple and Microsoft are now eager to establish the centralised “app store” concept
known from smartphones for their PC operating systems, too.

Copyright © 2012 Linup Front GmbH

46 2 Linux and Free Software

Summary

• The first Linux version was developed by Linus Torvalds and made available
as “free software” on the Internet. Today, hundreds of developers collabo-
rate worldwide to update and extend the system.

• Free software allows you to use the software for arbitrary purposes, to in-
spect and modify the code, and to pass modified or unmodified copies on
to others.

• Free-software licences give the receiver of a software package rights that
they wouldn’t otherwise have, while licence agreements for proprietary
software try to get the receiver to waive rights that they would otherwise
have.

• The GPL is one of the most popular free-software licences.
• Other common licences for free software include the BSD licence, the

Apache licence or the Mozilla Public License. Creative-commons licences
are meant for cultural works other than software.

• There is a wide variety of free and open-source software packages for all
sorts of purposes.

• There are very many different Linux distributions. The most popular in-
clude Red Hat Enterprise Linux and Fedora, SUSE Linux Enterprise Server
and openSUSE, Debian GNU/Linux and Ubuntu.

Bibliography

GPL-Urteil06 Landgericht Frankfurt am Main. “Urteil 2-6 0 224/06”, July 2006.
http://www.jbb.de/urteil_lg_frankfurt_gpl.pdf

GPL91 Free Software Foundation, Inc. “GNU General Public License, Version 2”,
June 1991. http://www.gnu.org/licenses/gpl.html

TD01 Linus Torvalds, David Diamond (Eds.) Just for Fun: Wie ein Freak die Com-
puterwelt revolutionierte. Hanser Fachbuch, 2001. ISBN 3-446-21684-7.

Copyright © 2012 Linup Front GmbH

3
First Steps with Linux

Contents

3.1 Logging In and Out 48
3.2 Desktop Environment and Browser 49

3.2.1 Graphical Desktop Environments 49
3.2.2 Browsers . 51
3.2.3 Terminals and Shells. 51

3.3 Creating and Modifying Text Files 51

Goals

• Trying simple Linux functionality
• Learning to create and modify files using a text editor

Prerequisites

• Basic knowledge of other computer operating systems is useful

lxes-basic.tex ()

48 3 First Steps with Linux

3.1 Logging In and Out

The Linux system distinguishes between different users. As a consequence, you
may not be able to start using the computer immediately after it has been switched
on. First you must tell the computer who you are—you need to “log in” (or “on”).
Based on the information you provide, the system can then decide what you may
do (or not do). Of course you need access rights to the system (an “account”)—theaccess rights

system administrator must have entered you as a valid user and assigned you a
user name (e. g., joe) and a password (e. g., secret). The password is supposed to
ensure that only you can use your account; you must keep it secret and should not
make it known to anybody else. Whoever knows your user name and password
can pretend to be you on the system, read (or delete) all your files, send electronic
mail in your name and generally get up to all kinds of shenanigans.

B Some modern Linux distributions try to make it easy on you and allow you
to skip the login process on a computer that only you will be using anyway.
If you use such a system, you will not have to log in explicitly, but the com-
puter boots straight into your session. You should of course take advantage
of this only if you do not foresee that third parties have access to your com-
puter; refrain from this in particular on laptop computers or other mobile
systems that tend to get lost or stolen.

Logging in in a graphical enviroment These days it is common for Linux worksta-
tions to present a graphical environment (as they should), and the login process
takes place on the graphics screen, too. Your computer displays a form that lets
you enter your user name and password.

B Don’t wonder if you only see asterisks when you’re entering your password.
This does not mean that your computer misunderstands your input, but that
it wants to make life more difficult for people who are watching you over
your shoulder in order to find out your password.

After you have logged in, the computer starts a graphical session for you, in
which you have convenient access to your application programs by means of
menus and icons (small pictures on the “desktop” background). Most graphical
environments for Linux support “session management” in order to restore your
session the way it was when you finished it the time before (as far as possible,
anyway). That way you do not need to remember which programs you were
running, where their windows were placed on the screen, and which files you
had been using.

Logging out in a graphical environment If you are done with your work or want
to free the computer for another user, you need to log out. This is also important
because the session manager needs to save your current session for the next time.
How logging out works in detail depends on your graphical environment, but as
a rule there is a menu item somewhere that does everything for you. If in doubt,
consult the documentation or ask your system administrator (or knowledgeable
buddy).

Logging in on a text console Unlike workstations, server systems often support
only a text console or are installed in draughty, noisy machine halls, where you
don’t want to spend more time than absolutely necessary. So you will prefer to log
into such a computer via the network. In both cases you will not see a graphical
login screen, but the computer asks you for your user name and password directly.
For example, you might simply see something like

computer login: _

Copyright © 2012 Linup Front GmbH

3.2 Desktop Environment and Browser 49

(if we stipulate that the computer in question is called “computer”). Here you must
enter your user name and finish it off with the ↩ key. The computer will con-
tinue by asking you for your password:

Password: _

Enter your password here. (This time you won’t even see asterisks—simply noth-
ing at all.) If you entered both the user name and password correctly, the system
will accept your login. It starts the command line interpreter (the shell), and you
may use the keyboard to enter commands and invoke programs. After logging in,
you will be placed in your “home directory”, where you will be able to find your
files.

B If you use the “secure shell”, for example, to log in to another machine via
the network, the user name question is usually skipped, since unless you
specify otherwise the system will assume that your user name on the re-
mote computer will be the same as on the computer you are initiating the
session from. The details are beyond the scope of this manual; the secure
shell is discussed in detail in the Linup Front training manual Linux Admin-
istration II.

Logging out on a text console On the text console, you can log out using, for
example, the logout command:

$ logout

Once you have logged out, on a text console the system once more displays the
start message and a login prompt for the next user. With a secure shell session,
you simply get another command prompt from your local computer.

Exercises

C 3.1 [!1] Try logging into the system. After that, log out again. (You will find
a user name and password in your system documentation, or—in a training
centre/school—your instructor/teacher will tell you what to use.)

C 3.2 [!2] What happens if you enter (a) a non-existing user name, (b) a wrong
password? Do you notice anything unusual? What reasons could there be
for the system to behave as it does?

3.2 Desktop Environment and Browser

3.2.1 Graphical Desktop Environments

If you logged into a graphical environment, your Linux computer presents a desk-
top that does not differ much from what you would get to see on other modern
computers.

B Unfortunately it is impossible for us to be more specific, since no two “Lin-
uxes” are the same here. Unlike systems like Windows or the Macintosh
operating system, which come with an “official” graphical environment,
Linux lets you choose—when the system is installed, most major distribu-
tions offer you a choice between several graphical environments:

• KDE and GNOME are “desktop environments” which attempt to pro-
vide a comprehensive suite of applications with a similar look and feel.
The goal of KDE and GNOME is to offer a user experience that is com-
parable or superior to that of proprietary systems. They try to include

Copyright © 2012 Linup Front GmbH

50 3 First Steps with Linux

innovative features like KDE’s “semantic search”, which indexes files
and documents in the background and is supposed to allow conve-
nient access to “all photographs I took in Spain last month”, regard-
less of where these are stored on disk1. Roughly speaking, KDE fo-
cuses on comprehensive customisability for sophisticated users, while
GNOME, in the interest of simplicity and usability, tends to lean to-
wards providing defaults that are impossible or less straightforward
to change.

• LXDE and XFCE are “lightweight” environments. They resemble KDE
and GNOME in their basic approach, but are more geared towards eco-
nomical use of resources and thus dispense with various expensive
services like semantic search.

• If you would rather not use a complete desktop environment, you
may install any of a number of “window managers”. This implies
certain tradeoffs regarding the optical consistency and cooperation of
programs, which result from the fact that, historically, there used to
be few guidelines for the look and feel of graphical programs on Unix
and Linux. Formerly—before KDE etc., which did establish a degree
of standardisation in this respect—this used to be the usual way of
doing things, but today a majority of Linux users relies on one of the
preassembled graphical environments.

B Even if two distributions use the same graphical environment (say, KDE)
this doesn’t mean that they will look the same on screen. Usually, the graph-
ical environments allow a large degree of customisation of their “look”
based on “themes”, and distributions use this to set themselves apart from
others. Consider cars; almost all cars have four wheels and a windscreen,
but you would still never confuse a BMW with a Citroën or Ferrari.

In any event, you are likely to find a control bar (dock, panel, what have you)control bar

either at the top or at the bottom of the screen, which allows you to access the
most important application programs by means of menu entries, or to log out or
shut down the computer. KDE relies on a “panel” that roughly resembles that
of Windows, where a “start button” (not actually called that) opens a menu of
programs, while the rest of the bar shows icons for the currently running appli-
cations alongside little useful helpers like a clock, the network state, and so on.
GNOME does not use a “start button”, but moves the menu bar to the top of the
screen; the most important programs are accessible through pull-down menus on
the left-hand side of the screen, while the right-hand part is reserved for system
status icons and the like.

The graphical environments usually provide a “file manager”, which lets youfile manager

access directories (“folders”) on disk and manipulate the files and subdirectories
they contain. The procedures here do not differ a lot from those on other graphical
systems: You can copy or move files by dragging them from one directory window
into another, and if you use the rightmost mouse button to click on the icon for a
file, a “context menu” opens to offer additional actions that you can apply to the
file. Do experiment.

Frequently-used files or programs can often be deposited on the screen back-dock

drop or placed in a certain area on screen (a “dock”) for quick and convenient
access.

A useful feature of most Linux-based graphical environments which OS X and
Windows do not offer (by default, anyway) are “virtual desktops”. These multiplyvirtual desktops

the available space on screen by making it convenient to switch back and forth
between several simulated “desktops”—each with its own selection of program
windows. This allows you to place everything you need to work on a program or
document on one desktop, reserve another for your e-mail reader and yet another

1Microsoft promised that particular feature a few times, but it always conspicuously disappeared
from the novelty list before the next Windows version was released.

Copyright © 2012 Linup Front GmbH

3.3 Creating and Modifying Text Files 51

for your web browser, and to dash off a quick e-mail message without having to
rearrange the windows on your “programming desktop”.

3.2.2 Browsers

One of the most important programs on contemporary computers is the web
browser. Fortunately, the most popular browsers are open-source programs, and
Firefox or Google Chrome are available for Linux just as well as for Windows
or OS X. (Your distribution probably doesn’t offer Google Chrome but the true
open-source variant, Chromium, but that isn’t a big difference.) Look in your
application menu for an entry like “Internet”, where you ought to find a browser
(among other things).

B Due to trademark concerns, on Debian GNU/Linux systems and various
derivatives the Firefox browser is called “Iceweasel” instead (clever pun,
eh?). This is because the Mozilla Foundation, the producer of Firefox, allows
the distribution of precompiled versions of the browser under the name of
“Firefox” only if the code corresponds to the “official” version. Since the De-
bian project on the one hand reserves the right to repair security problems
on its own authority, and on the other hand takes copyright and trademarks
very seriously, the name had to be changed. (Other distributions stay with
the official version or don’t look as closely at the naming issue.)

3.2.3 Terminals and Shells

Even within a graphical Linux environment it is often convenient to access a “ter-
minal window” where you can enter textual commands in a “shell” (the remain-
der of this manual mostly talks about shell commands, so you are likely to need
this).

Fortunately, on most Linux desktop environments a terminal window is only a
few mouse clicks away. In KDE on Debian GNU/Linux, for example, there is an
entry called “Konsole (Terminal)” within the start menu under “System”, which
will open a convenient program running a shell that will accept and execute tex-
tual commands. Similar methods are available on other desktop environments
and distributions.

Exercises

C 3.3 [!2] Which graphical environment (if any) is installed on your computer?
Look around. Open a file manager and figure out what happens if you right-
click on a file or directory icon. What happens if you right-click on the empty
window background (between icons)? How do you move a file from one di-
rectory to another? How do you create a new file or directory? How do you
rename a file?

C 3.4 [2] Which web browser is installed on your computer? Are there several?
Try starting the browser (or browsers) and make sure they are working.

C 3.5 [!2] Open a terminal window and close it again. Does your terminal win-
dow program support several sessions within the same window (possibly
using subwindows with “tabs”)?

3.3 Creating and Modifying Text Files

No matter whether you are writing scripts or programs, editing configuration files
as the system administrator, or simply jot down a shopping list: Linux is at its best
when modifying text files. Hence, one of your first acts as a new Linux user ought
to be learning how to create and edit text files. The tool of choice for this is a text text editor

Copyright © 2012 Linup Front GmbH

52 3 First Steps with Linux

editor.
Text editors for Linux come in all sizes, shapes, and colours. We’re taking the

easy way out by explaining the most important features of “GNU Nano”, a simple,
beginner-proof text editor that runs inside a terminal session.

B Of course the common graphical interfaces also support graphical text ed-
itors with menus, tool bars, and all sorts of useful goodies—comparable to
programs like “Notepad” on Windows (or even better). For example, look
for “Kate” on KDE or “gedit” on GNOME. We shall not be looking at these
editors in detail here, for two reasons:

• They tend to explain themselves for the most part, and we do not want
to insult your intelligence more than necessary.

• You will not always be in a position to use a graphical interface. You
may be working on a remote computer using the “secure shell”, or
standing in front of a server console in the basement machine hall, and
chances are that you will only have a text screen at your disposal.

In any case, you don’t have to decide right now which one editor you will be
using for the rest of your life. Nobody prevents you from using a graphical
editor on your graphical desktop PC and hauling out something like Nano
only if there is no other option.

B Old-school Linux aficionados will scoff at something like Nano: The edi-
tor of choice for the true Linux professional is vi (pronounced “vee aye”),
which like a living fossil has survived from a time when the greenish light of
text terminals filled the machine rooms and one couldn’t rely on a keyboard
featuring arrow keys (!). If you are about to embark on a career in system
administration, you should sooner or later become familiar with vi (at least
on an elementary level), since vi is the only editor worth using that is avail-
able in largely identical form on practically every Linux or Unix variant. But
that moment isn’t now.

GNU Nano is a “clone” of a simple editor called pico which was part of thepico

PINE e-mail package. (PINE wasn’t free software according to the generally ac-
cepted definitions, so the GNU project wrote the new editor from scratch. In the
meantime, PINE’s successor is freely available under the name of “alpine”, and it
contains a free version of pico, too.) Most distributions should offer either GNU
Nano or pico; for simplicity we will spend the rest of this section talking about
GNU Nano. Practically anything we say here also applies to pico.

B Compared to the original pico, GNU Nano features some extensions (which
shouldn’t come as a surprise considering that already according to the name
it is three orders of magnitude better), but most of these do not concern us
directly. There is really only one extension that is very obvious: GNU Nano
is “internationalised”, so, for example, on a system that is otherwise set up
to use the German language it should delight you with messages and help
texts in German.

GNU Nano is most conveniently started inside a terminal window (Sec-Starting GNU Nano

tion 3.2.3) using a command like

$ nano myfile

(the “$ ” here is just a stylised abbreviation of the command prompt—which may
look somewhat more baroque on your system—and you do not need to enter this.
Don’t forget to finish the command using ↩ , though!) Subsequently you sould
see something resembling Figure 3.1—that is, a mostly empty window with one
highlighted line at the top and two “help lines” at the bottom, which list important
commands with brief explanations. The line immediately above the help lines is
the “status line”, where messages from Nano will appear and where you will be
able to enter, e. g., file names when saving data to disk.

Copyright © 2012 Linup Front GmbH

3.3 Creating and Modifying Text Files 53

Figure 3.1: The GNU Nano text editor

B If you need more useable space on the screen, you can suppress the help
lines using Alt + x (press the Alt key—to the left of the space bar on the
keyboard—and hold it down while you press x). Another Alt + x dis-
plays them again. (If you need even more useable space, you can also sup-
press the empty line immediately below the top line using Alt + o .)

Entering and changing text To enter new text, simply start to type inside the Nano
window. If you make a mistake, the “backspace” key ⇐ will delete the charac-
ter to the left of the cursor. Use the arrow keys to navigate around the text, for
example to change something nearer the beginning. If you type something new,
it will appear exactly where the cursor is positioned. The Del key removes the
character under the cursor and will cause the remainder of the line (if there is one)
to move one position to the left. Everything is really fairly obvious.

B Some Nano versions even support a mouse, so—given that you are run- Nano and the mouse

ning Nano on a graphical screen, or your textual environment can handle
a mouse—you can click somewhere in your text to place the cursor at that
point. You may have to enable the mouse support by pressing Alt + m .

Saving text When you are done entering or editing your text, you can save it
using Ctrl + o (hold down Ctrl while pressing o). Nano asks you for a name
for the file (on the status line), which you can then enter and finish off with ↩
. (You will find out more about file names in Chapter 6 at the latest.) Nano then
stores the text in the named file.

Quitting Nano You can quit Nano using Ctrl + x . If your text contains unsaved
modifications, Nano asks you whether the text should be saved; answer y to do
that (Nano may ask you for a file name) or n to quit Nano immediately (which
will cause your unsaved modifications to be discarded).

Loading files A different (already existing) file can be loaded into your current
text using Ctrl + r —it will be inserted at the cursor position. Nano asks you for
the name of the file, which you may either enter directly, or alternatively use Ctrl +

Copyright © 2012 Linup Front GmbH

54 3 First Steps with Linux

t to open the “file browser”, which will offer you an interactive choice of existing
files. (Incidentally, this also works when saving a file using Ctrl + o .)

Cutting and pasting You may use the Ctrl + k command to remove (“cut”) the
line containing the cursor and store it in a buffer (Caution: Nano will always re-
move all of the line, no matter where inside the line the cursor is actually posi-
tioned!). Ctrl + u will then insert (“paste”) the content of the buffer again—either
in the same place, if you have pressed Ctrl + k inadvertently or simply wanted
to copy the line rather than move it, or elsewhere in your text.

B Insertions always happen where the cursor is positioned. Hence if the cursor
is in the middle of a line when you hit Ctrl + u , the line from the buffer
becomes the right-hand part of that line, and whatever was to the right of
the cursor on the original line becomes a new line.

You can move several consecutive lines to the buffer by pressing Ctrl + k a num-
ber of times in a row. These lines will then be inserted again en bloc.

If you want to cut just part of a line, position the cursor at the corresponding
point and press Ctrl + ^ (Alt + a on keyboards like some German ones that
expect you to type a character to be adorned with a circumflex after you press
“^”). Then move the cursor to the end of the material to be cut—Nano helpfully
highlights the part of your text that you have selected for cutting—and move the
region to the buffer using Ctrl + k . Do note that the character under the cursor
itself is not cut! Afterwards you can press Ctrl + u as above to insert the buffer
content elsewhere.

Searching text If you press Ctrl + w , Nano uses the status line to ask you for a
piece of text. The cursor then jumps to the next occurrence of that piece of text in
your document, starting at its current position. This makes it convenient to locate
specific places in your text.

Online help You can use Ctrl + g to display Nano’s internal help screen, which
explains the basics of the editor as well as various keyboard commands (there are
many more than whe have explained here). Leave the help screen again using
Ctrl + x .

These are the most important features of GNU Nano. Practice makes perfect—
do feel free to experiment, you will not be able to damage anything.

B Back to the topic of vi (you may remember—the editor of Linux gurus). If
you are game for an adventure, then ensure that the vim editor is installed on
your system (this is the go-to implementation of vi today; hardly anybody
uses the original BSD vi on Linux), start the vimtutor program, and spend
an exciting and instructional half hour with the interactive introduction to
vi. (Depending on your Linux distribution, you may have to install vimtutor
as a separate package. When in doubt, ask your system administrator or
somebody else knowledgeable.)

Exercises

C 3.6 [!2] Start GNU Nano and enter some simple text—something like

Roses are red,

Violets are blue,

Linux is brilliant,

I know this is true.

Save this to a file called roses.txt

Copyright © 2012 Linup Front GmbH

3.3 Creating and Modifying Text Files 55

C 3.7 [2] Using the text from the previous exercise, cut the line

Linux is brilliant,

and paste it back three times, so that the text now looks like

Roses are red,

Violets are blue,

Linux is brilliant,

Linux is brilliant,

Linux is brilliant,

I know this is true.

Then position the cursor on the “i” of “is” in the first of these lines, mark
that position, navigate to the “i” of “is” on the third line, and remove the
marked region.

Commands in this Chapter

logout Terminates a shell session bash(1) 49
pico Very simple text editor from the PINE/Alpine package pico(1) 52

Summary

• Before using a Linux system, you have to log in giving your user name and
password. After using the system, you have to log out again.

• Linux offers various graphical environments, which for the most part work
in a similar fashion and fairly intuitively.

• A terminal window allows you to enter textual shell commands within a
graphical environment.

• GNU Nano is a simple text editor.

Copyright © 2012 Linup Front GmbH

4
Who’s Afraid Of The Big Bad
Shell?

Contents

4.1 Why? . 58
4.1.1 What Is The Shell? 58

4.2 Commands . 59
4.2.1 Why Commands?. 59
4.2.2 Command Structure. 60
4.2.3 Command Types 61
4.2.4 Even More Rules 61

Goals

• Appreciating the advantages of a command-line user interface
• Working with Bourne-Again Shell (Bash) commands
• Understanding the structure of Linux commands

Prerequisites

• Basic knowledge of using computers is helpful

grd1-shell1-opt.tex[!othershells] ()

58 4 Who’s Afraid Of The Big Bad Shell?

4.1 Why?

More so than other modern operating systems, Linux (like Unix) is based on the
idea of entering textual commands via the keyboard. This may sound antediluvial
to some, especially if one is used to systems like Windows, who have been trying
for 15 years or so to brainwash their audience into thinking that graphical user
interfaces are the be-all and end-all. For many people who come to Linux from
Windows, the comparative prominence of the command line interface is at first
a “culture shock” like that suffered by a 21-century person if they suddenly got
transported to King Arthur’s court – no cellular coverage, bad table manners, and
dreadful dentists!

However, things aren’t as bad as all that. On the one hand, nowadays there
are graphical interfaces even for Linux, which are equal to what Windows or Ma-
cOS X have to offer, or in some respects even surpass these as far as convenience
and power are concerned. On the other hand, graphical interfaces and the text-
oriented command line are not mutually exclusive, but in fact complementary
(according to the philosophy “the right tool for every job”).

At the end of the day this only means that you as a budding Linux user will
do well to also get used to the text-oriented user interface, known as the “shell”.
Of course nobody wants to prevent you from using a graphical desktop for every-
thing you care to do. The shell, however, is a convenient way to perform many
extremely powerful operations that are rather difficult to express graphically. To
reject the shell is like rejecting all gears except first in your car1. Sure, you’ll get
there eventually even in first gear, but only comparatively slowly and with a hor-
rible amount of noise. So why not learn how to really floor it with Linux? And if
you watch closely, we’ll be able to show you another trick or two.

4.1.1 What Is The Shell?

Users cannot communicate directly with the operating system kernel. This is only
possible through programs accessing it via “system calls”. However, you must be
able to start such programs in some way. This is the task of the shell, a special user
program that (usually) reads commands from the keyboard and interprets them
(for example) as commands to be executed. Accordingly, the shell serves as an
“interface” to the computer that encloses the actual operating system like a shell
(as in “shellfish”—hence the name) and hides it from view. Of course the shell is
only one program among many that access the operating system.

B Even today’s graphical “desktops” like KDE can be considered “shells”. In-
stead of reading text commands via the keyboard, they read graphical com-
mands via the mouse—but as the text commands follow a certain “gram-
mar”, the mouse commands do just the same. For example, you select ob-
jects by clicking on them and then determine what to do with them: open-
ing, copying, deleting, …

Even the very first Unix—end-1960s vintage—had a shell. The oldest shell to
be found outside museums today was developed in the mid-1970s for “Unix ver-
sion 7” by Stephen L. Bourne. This so-called “Bourne shell” contains most basicBourne shell

functions and was in very wide-spread use, but is very rarely seen in its original
form today. Other classic Unix shells include the C shell, created at the UniversityC shell

of California in Berkeley and (very vaguely) based on the C programming lan-
guage, and the largely Bourne-shell compatible, but functionally enhanced, KornKorn shell

shell (by David Korn, also at AT&T).
Standard on Linux systems is the Bourne-again shell, bash for short. It wasBourne-again shell

developed under the auspices of the Free Software Foundation’s GNU project by
Brian Fox and Chet Ramey and unifies many functions of the Korn and C shells.

1This metaphor is for Europeans and other people who can manage a stick shift; our American
readers of course all use those wimpy automatic transmissions. It’s like they were all running Win-
dows.

Copyright © 2012 Linup Front GmbH

4.2 Commands 59

B Besides the mentioned shells, there are many more. On Unix, a shell is sim- shells: normal programs

ply an application program like all others, and you need no special privi-
leges to write one—you simply need to adhere to the “rules of the game”
that govern how a shell communicates with other programs.

Shells may be invoked interactively to read user commands (normally on a “ter-
minal” of some sort). Most shells can also read commands from files containing
pre-cooked command sequences. Such files are called “shell scripts”. shell scripts

A shell performs the following steps:

1. Read a command from the terminal (or the file)

2. Validate the command

3. Run the command directly or start the corresponding program

4. Output the result to the screen (or elsewhere)

5. Continue at step 1.

In addition to this standard command loop, a shell generally contains further fea-
tures such as a programming language. This includes complex command struc- programming language

tures involving loops, conditions, and variables (usually in shell scripts, less fre-
quently in interactive use). A sophisticated method for recycling recently used
commands also makes a user’s life easier.

Shell sessions can generally be terminated using the exit command. This also Terminating shell sessions

applies to the shell that you obtained immediately after logging in.
Although, as we mentioned, there are several different shells, we shall con-

centrate here on bash as the standard shell on most Linux distributions. The LPI
exams also refer to bash exclusively.

Exercises

C 4.1 [2] Log off and on again and check the output of the “echo $0” command
in the login shell. Start a new shell using the “bash” command and enter
“echo $0” again. Compare the output of the two commands. Do you notice
anything unusual?

4.2 Commands

4.2.1 Why Commands?

A computer’s operation, no matter which operating system it is running, can be
loosely described in three steps:

1. The computer waits for user input

2. The user selects a command and enters it via the keyboard or mouse

3. The computer executes the command

In a Linux system, the shell displays a “prompt”, meaning that commands can be
entered. This prompt usually consists of a user and host (computer) name, the
current directory, and a final character:

joe@red:/home > _

In this example, user joe works on computer red in the /home directory.

Copyright © 2012 Linup Front GmbH

60 4 Who’s Afraid Of The Big Bad Shell?

4.2.2 Command Structure

A command is essentially a sequence of characters which is ends with a press
of the ↩ key and is subsequently evaluated by the shell. Many commands are
vaguely inspired by the English language and form part of a dedicated “command
language”. Commands in this language must follow certain rules, a “syntax”, forsyntax

the shell to be able to interpret them.
To interpret a command line, the shell first tries to divide the line into words.words

Just like in real life, words are separated by spaces. The first word on a line is usu-First word: command

ally the actual command. All other words on the line are parameters that explainparameters

what is wanted in more detail.

A DOS and Windows users may be tripped up here by the fact that the shell
distinguishes between uppercase and lowercase letters. Linux commands
are usually spelled in lowercase letters only (exceptions prove the rule) and
not understood otherwise. See also Section 4.2.4.

B When dividing a command into words, one space character is as good as
many – the difference does not matter to the shell. In fact, the shell does
not even insist on spaces; tabulator characters are also allowed, which is
however mostly of importance when reading commands from files, since
the shell will not let you enter tab character directly (not without jumping
through hoops, anyway).

B You may even use the line terminator (↩) to distribute a long command
across several input lines, but you must put a “Token\” immediately in front
of it so the shell will not consider your command finished already.

A command’s parameters can be roughly divided into two types:

• Parameters starting with a dash (“-”) are called options. These are usually,options

er, optional—the details depend on the command in question. Figuratively
spoken they are “switches” that allow certain aspects of the command to
be switched on or off. If you want to pass several options to a command,
they can (often) be accumulated behind a single dash, i. e., the options se-
quence “-a -l -F” corresponds to “-alF”. Many programs have more options
than can be conveniently mapped to single characters, or support “long op-
tions” for readability (frequently in addition to equivalent single-character
options). Long options most often start with two dashes and cannot be ac-
cumulated: “foo --bar --baz”.

• Parameters with no leading dash are called arguments. These are often thearguments

names of files that the command should process.

The general command structure can be displayed as follows:command structure

• Command—“What to do?”

• Options—“How to do it?”

• Arguments—“What to do it with?”

Usually the options follow the command and precede the arguments. However,
not all commands insist on this—with some, arguments and options can be mixed
arbitrarily, and they behave as if all options came immediately after the command.
With others, options are taken into account only when they are encountered while
the command line is processed in sequence.

A The command structure of current Unix systems (including Linux) has
grown organically over a period of almost 40 years and thus exhibits vari-
ous inconsistencies and small surprises. We too believe that there ought to
be a thorough clean-up, but 30 years’ worth of shell scripts are difficult to
ignore completely … Therefore be prepared to get used to little weirdnesses
every so often.

Copyright © 2012 Linup Front GmbH

4.2 Commands 61

4.2.3 Command Types

In shells, there are essentially two kinds of commands:

Internal commands These commands are made available by the shell itself. The
Bourne-again shell contains approximately 30 such commands, which can
be executed very quickly. Some commands (such as exit or cd) alter the state
of the shell itself and thus cannot be provided externally.

External commands The shell does not execute these commands by itself but
launches executable files, which within the file system are usually found
in directories like /bin or /usr/bin. As a user, you can provide your own
programs, which the shell will execute like all other external commands.

You can use the type command to find out the type of a command. If you pass External or internal?

a command name as the argument, it outputs the type of command or the corre-
sponding file name, such as

$ type echo

echo is a shell builtin

$ type date

date is /bin/date

(echo is an interesting command which simply outputs its parameters:

$ echo Thou hast it now, king, Cawdor, Glamis, all

Thou hast it now, king, Cawdor, Glamis, all

date displays the current date and time, possibly adjusted to the current time zone
and language setup:

$ date

Mon May 7 15:32:03 CEST 2012

You will find out more about echo and date in Chapter 9.)
You can obtain help for internal Bash commands via the help command: help

$ help type

type: type [-afptP] name [name ...]

For each NAME, indicate how it would be interpreted if used as a

command name.

If the -t option is used, `type' outputs a single word which is one of

`alias', `keyword', `function', `builtin', `file' or `', if NAME is an

�����

Exercises

C 4.2 [2] With bash, which of the following programs are provided externally
and which are implemented within the shell itself: alias, echo, rm, test?

4.2.4 Even More Rules

As mentioned above, the shell distinguishes between uppercase and lowercase
letters when commands are input. This does not apply to commands only, but
consequentially to options and parameters (usually file names) as well.

Furthermore, you should be aware that the shell treats certain characters in the
input specially. Most importantly, the already-mentioned space character is used space character

to separate words on teh command line. Other characters with a special meaning
include

Copyright © 2012 Linup Front GmbH

62 4 Who’s Afraid Of The Big Bad Shell?

$&;(){}[]*?!<>"'

If you want to use any of these characters without the shell interpreting according
to its the special meaning, you need to “escape” it. You can use the backslash “\”“Escaping” characters

to escape a single special character or else single or double quotes ('…', "…") to
excape several special characters. For example:

$ touch 'New File'

Due to the quotes this command applies to a single file called New File. Without
quotes, two files called New and File would have been involved.

B We can’t explain all the other special characters here. Most of them will
show up elsewhere in this manual – or else check the Bash documentation.

Commands in this Chapter

bash The “Bourne-Again-Shell”, an interactive command interpreter
bash(1) 58

date Displays the date and time date(1) 61
echo Writes all its parameters to standard output, separated by spaces

bash(1), echo(1) 61
help Displays on-line help for bash commands bash(1) 61
type Determines the type of command (internal, external, alias) bash(1) 61

Summary

• The shell reads user commands and executes them.
• Most shells have programming language features and support shell scripts

containing pre-cooked command sequences.
• Commands may have options and arguments. Options determine how the

command operates, and arguments determine what it operates on.
• Shells differentiate between internal commands, which are implemented in

the shell itself, and external commands, which correspond to executable files
that are started in separate processes.

Copyright © 2012 Linup Front GmbH

5
Getting Help

Contents

5.1 Self-Help . 64
5.2 The help Command and the --help Option 64
5.3 The On-Line Manual 64

5.3.1 Overview . 64
5.3.2 Structure . 65
5.3.3 Chapters . 66
5.3.4 Displaying Manual Pages 66

5.4 Info Pages . 67
5.5 HOWTOs. 68
5.6 Further Information Sources 68

Goals

• Being able to handle manual and info pages
• Knowing about and finding HOWTOs
• Being familiar with the most important other information sources

Prerequisites

• Linux Overview
• Basic command-line Linux usage (e. g., from the previous chapters)

grd1-hilfe.tex ()

64 5 Getting Help

5.1 Self-Help

Linux is a powerful and intricate system, and powerful and intricate systems are,
as a rule, complex. Documentation is an important tool to manage this complex-
ity, and many (unfortunately not all) aspects of Linux are documented very exten-
sively. This chapter describes some methods to access this documentation.

B “Help” on Linux in many cases means “self-help”. The culture of free soft-
ware implies not unnecessarily imposing on the time and goodwill of other
people who are spending their free time in the community by asking things
that are obviously explained in the first few paragraphs of the manual. As
a Linux user, you do well to have at least an overview of the available doc-
umentation and the ways of obtaining help in cases of emergency. If you
do your homework, you will usually experience that people will help you
out of your predicament, but any tolerance towards lazy individuals who
expect others to tie themselves in knots on their behalf, on their own time,
is not necessarily very pronounced.

B If you would like to have somebody listen around the clock, seven days a
week, to your not-so-well-researched questions and problems, you will have
to take advantage of one of the numerous “commercial” support offerings.
These are available for all common distributions and are offered either by
the distribution vendor themselves or else by third parties. Compare the
different service vendors and pick one whose service level agreements and
pricing suit you.

5.2 The help Command and the --help Option

In bash, internal commands are described in more detail by the help command,Internal bash commands

giving the command name in question as an argument:

$ help exit

exit: exit [n]

Exit the shell with a status of N.

If N is omitted, the exit status

is that of the last command executed.

$ _

B More detailed explanations are available from the shell’s manual page and
info documentation. These information sources will be covered later in this
chapter.

Many external commands (programs) support a --help option instead. Most
commands display a brief listing of their parameters and syntax.

B Not every command reacts to --help; frequently the option is called -h or -?,
or help will be output if you specify any invalid option or otherwise illegal
command line. Unfortunately there is no universal convention.

5.3 The On-Line Manual

5.3.1 Overview

Nearly every command-line program comes with a “manual page” (or “man
page”), as do many configuration files, system calls etc. These texts are generally
installed with the software, and can be perused with the “man ⟨name⟩” command.Command man

Copyright © 2012 Linup Front GmbH

5.3 The On-Line Manual 65

Table 5.1: Manual page sections

Section Content
NAME Command name and brief description

SYNOPSIS Description of the command syntax
DESCRIPTION Verbose description of the command’s effects

OPTIONS Available options
ARGUMENTS Available Arguments

FILES Auxiliary files
EXAMPLES Sample command lines
SEE ALSO Cross-references to related topics

DIAGNOSTICS Error and warning messages
COPYRIGHT Authors of the command

BUGS Known limitations of the command

Here, ⟨name⟩ is the command or file name that you would like explained. “man
bash”, for example, produces a list of the aforementioned internal shell commands.

However, the manual pages have some disadvantages: Many of them are only
available in English; there are sets of translations for different languages which are
often incomplete. Besides, the explanations are frequently very complex. Every
single word can be important, which does not make the documentation accessi-
ble to beginners. In addition, especially with longer documents the structure can
be obscure. Even so, the value of this documentation cannot be underestimated.
Instead of deluging the user with a large amount of paper, the on-line manual is
always available with the system.

B Many Linux distributions pursue the philosophy that there should be a
manual page for every command that can be invoked on the command line.
This does not apply to the same extent to programs belonging to the graph-
ical desktop environments KDE and GNOME, many of which not only do
not come with a manual page at all, but which are also very badly docu-
mented even inside the graphical environment itself. The fact that many of
these programs have been contributed by volunteers is only a weak excuse.

5.3.2 Structure

The structure of the man pages loosely follows the outline given in Table 5.1, even Man page outline

though not every manual page contains every section mentioned there. In partic-
ular, the EXAMPLES are frequently given short shrift.

B The BUGS heading is often misunderstood: Read bugs within the imple-
mentation get fixed, of course; what is documented here are usually restric-
tions which follow from the approach the command takes, which are not able
to be lifted with reasonable effort, and which you as a user ought to know
about. For example, the documentation for the grep command points out
that various constructs in the regular expression to be located may lead to
the grep process using very much memory. This is a consequence of the way
grep implements searching and not a trivial, easily fixed error.

Man pages are written in a special input format which can be processed for text
display or printing by a program called groff. Source code for the manual pages is
stored in the /usr/share/man directory in subdirectories called man𝑛, where 𝑛 is one
of the chapter numbers from Table 5.2.

B You can integrate man pages from additional directories by setting the MAN-

PATH environment variable, which contains the directories which will be
searched by man, in order. The manpath command gives hints for setting up
MANPATH.

Copyright © 2012 Linup Front GmbH

66 5 Getting Help

Table 5.2: Manual Page Topics

No. Topic
1 User commands
2 System calls
3 C language library functions
4 Device files and drivers
5 Configuration files and file formats
6 Games
7 Miscellaneous (e. g. groff macros, ASCII tables, …)
8 Administrator commands
9 Kernel functions
n ”‘New”’ commands

5.3.3 Chapters

Every manual page belongs to a “chapter” of the conceptual “manual” (Table 5.2).Chapters

Chapters 1, 5 and 8 are most important. You can give a chapter number on the man

command line to narrow the search. For example, “man 1 crontab” displays the
man page for the crontab command, while “man 5 crontab” explains the format of
crontab files. When referring to man pages, it is customary to append the chap-
ter number in parentheses; we differentiate accordingly between crontab(1), the
crontab command manual, and crontab(5), the description of the file format.

With the -a option, man displays all man pages matching the given name; with-man -a

out this option, only the first page found (generally from chapter 1) will be dis-
played.

5.3.4 Displaying Manual Pages

The program actually used to display man pages on a text terminal is usually
less, which will be discussed in more detail later on. At this stage it is important
to know that you can use the cursor keys ↑ and ↓ to navigate within a man
page. You can search for keywords inside the text by pressing / —after entering
the word and pressing the return key, the cursor jumps to the next occurrence of
the word (if it does occur at all). Once you are happy, you can quit the display
using q to return to the shell.

B Using the KDE web browser, Konqueror, it is convenient to obtain nicely for-
matted man pages. Simply enter the URL “man:/⟨name⟩” (or even “#⟨name⟩”)

Figure 5.1: A manual page in a text terminal (left) and in Konqueror (right)

Copyright © 2012 Linup Front GmbH

5.4 Info Pages 67

in the browser’s address line. This also works on the KDE command line

Before rummaging aimlessly through innumerable man pages, it is often sen-
sible to try to access general information about a topic via apropos. This command Keyword search

works just like “man -k”; both search the “NAME” sections of all man pages for
a keyword given on the command line. The output is a list of all manual pages
containing the keyword in their name or description.

A related command is whatis. This also searches all manual pages, but for a whatis

command (file, …) name rather than a keyword—in other words, the part of the
“NAME” section to the left of the dash. This displays a brief description of the
desired command, system call, etc.; in particular the second part of the “NAME”
section of the manual page(s) in question. whatis is equivalent to “man -f”.

Exercises

C 5.1 [!1] View the manual page for the ls command. Use the text-based man

command and—if available—the Konqueror browser.

C 5.2 [2] Which manual pages on your system deal (at least according to their
“NAME” sections) with processes?

C 5.3 [5] (Advanced.) Use a text editor to write a manual page for a hypotheti-
cal command. Read the man(7) man page beforehand. Check the appearance
of the man page on the screen (using “groff -Tascii -man ⟨file⟩ | less”) and
as printed output (using something like “groff -Tps -man ⟨file⟩ | gv -”).

5.4 Info Pages

For some commands—often more complicated ones—there are so-called “info
pages” instead of (or in addition to) the more usual man pages. These are usu-
ally more extensive and based on the principles of hypertext, similar to the World hypertext

Wide Web.

B The idea of info pages originated with the GNU project; they are therefore
most frequently found with software published by the FSF or otherwise be-
longing to the GNU project. Originally there was supposed to be only info
documentation for the “GNU system”; however, since GNU also takes on
board lots of software not created under the auspices of the FSF, and GNU
tools are being used on systems pursuing a more conservative approach,
the FSF has relented in many cases.

Analogously to man pages, info pages are displayed using the “info ⟨command⟩”
command (the package containing the info program may have to be installed ex-
plicitly). Furthermore, info pages can be viewed using the emacs editor or displayed
in the KDE web browser, Konqueror, via URLs like “info:/⟨command⟩”.

B One advantage of info pages is that, like man pages, they are written in
a source format which can conveniently be processed either for on-screen
display or for printing manuals using PostScript or PDF. Instead of groff,
the TEX typesetting program is used to prepare output for printing.

Exercises

C 5.4 [!1] Look at the info page for the ls program. Try the text-based info

browser and, if available, the Konqueror browser.

C 5.5 [2] Info files use a crude (?) form of hypertext, similar to HTML files on
the World Wide Web. Why aren’t info files written in HTML to begin with?

Copyright © 2012 Linup Front GmbH

68 5 Getting Help

5.5 HOWTOs

Both manual and info pages share the problem that the user must basically know
the name of the program to use. Even searching with apropos is frequently nothing
but a game of chance. Besides, not every problem can be solved using one sin-
gle command. Accordingly, there is “problem-oriented” rather than “command-Problem-oriented

documentation oriented” documentation is often called for. The HOWTOs are designed to help
with this.

HOWTOs are more extensive documents that do not restrict themselves to sin-
gle commands in isolation, but try to explain complete approaches to solving
problems. For example, there is a “DSL HOWTO” detailing ways to connect a
Linux system to the Internet via DSL, or an “Astronomy HOWTO” discussing as-
tronomy software for Linux. Many HOWTOs are available in languages other
than English, even though the translations often lag behind the English-language
originals.

Most Linux distributions furnish the HOWTOs (or significant subsets) as pack-HOWTO packages

ages to be installed locally. They end up in a distribution-specific directory—/usr/

share/doc/howto for SUSE distributions, /usr/share/doc/HOWTO for Debian GNU/Linux—
, typically either als plain text or else HTML files. Current versions of all HOWTOsHOWTOs on the Web

and other formats such as PostScript or PDF can be found on the Web on the site
of the “Linux Documentation Project” (http://www.tldp.org) which also offers other
Linux documentation.

5.6 Further Information Sources

You will find additional documentation and example files for (nearly) every in-Additional information

stalled software package under /usr/share/doc or /usr/share/doc/packages (depend-
ing on your distribution). Many GUI applications (such as those from the KDE or
GNOME packages) offer “help” menus. Besides, many distributions offer special-
ized “help centers” that make it convenient to access much of the documentation
on the system.

Independently of the local system, there is a lot of documentation available on
the Internet, among other places on the WWW and in USENET archives.WWW

USENET Some of the more interesting web sites for Linux include:

http://www.tldp.org/ The “Linux Documentation Project”, which is in charge of
man pages and HOWTOs (among other things).

http://www.linux.org/ A general “portal” for Linux enthusiasts.

http://www.linuxwiki.de/ A “free-form text information database for everything
pertaining to Linux” (in German).

http://lwn.net/ Linux Weekly News—probably the best web site for Linux news of
all sorts. Besides a daily overview of the newest developments, products,
security holes, Linux advocacy in the press, etc., on Thursdays there is an
extensive on-line magazine with well-researched background reports about
the preceding week’s events. The daily news are freely available, while the
weekly issues must be paid for (various pricing levels starting at US-$ 5 per
month). One week after their first appearance, the weekly issues are made
available for free as well.

http://freecode.com/ This site publishes announcements of new (predominantly
free) software packages, which are often available for Linux. In addition to
this there is a database allowing queries for interesting projects or software
packages.

http://www.linux-knowledge-portal.de/ A site collecting “headlines” from other in-
teresting Linux sites, including LWN and Freshmeat.

Copyright © 2012 Linup Front GmbH

5.6 Further Information Sources 69

If there is nothing to be found on the Web or in Usenet archives, it is possible to
ask questions in mailing lists or Usenet groups. In this case you should note that
many users of these forums consider it very bad form to ask questions answered
already in the documentation or in a “FAQ” (frequently answered questions) re-
source. Try to prepare a detailed description of your problem, giving relevant
excerpts of log files, since a complex problem like yours is difficult to diagnose at
a distance (and you will surely be able to solve non-complex problems by your-
self).

B A news archive is accessible on http://groups.google.com/ (formerly De-
jaNews)

B Interesting news groups for Linux can be found in the English-language
comp.os.linux.* or the German-language de.comp.os.unix.linux.* hierarchies.
Many Unix groups are appropriate for Linux topics; a question about the
shell should be asked in a group dedicated to shell programming rather
than a Linux group, since shells are usually not specific to Linux.

B Linux-oriented mailing lists can be found, for example, at majordomo@vger.

kernel.org. You should send an e-mail message including “subscribe LIST” to
this address in order to subscribe to a list called LIST. A commented list of
all available mailing lists on the system may be found at http://vger.kernel.
org/vger-lists.html.

B An established strategy for dealing with seemingly inexplicable problems is
to search for the error message in question using Google (or another search search engine

engine you trust). If you do not obtain a helpful result outright, leave out
those parts of your query that depend on your specific situation (such as
domain names that only exist on your system). The advantage is that Google
indexes not just the common web pages, but also many mailing list archives,
and chances are that you will encounter a dialogue where somebody else
had a problem very like yours.

Incidentally, the great advantage of open-source software is not only the large
amount of documentation, but also the fact that most documentation is restricted Free documentation

as little as the software itself. This facilitates collaboration between software
developers and documentation authors, and the translation of documentation
into different languages is easier. In fact, there is ample opportunity for non-
programmers to help with free software projects, e. g., by writing good documen-
tation. The free-software scene should try to give the same respect to documen-
tation authors that it does to programmers—a paradigm shift that has begun but
is by no means finished yet.

Commands in this Chapter

apropos Shows all manual pages whose NAME sections contain a given keyword
apropos(1) 67

groff Sophisticated typesetting program groff(1) 65, 67
help Displays on-line help for bash commands bash(1) 64
info Displays GNU Info pages on a character-based terminal info(1) 67
less Displays texts (such as manual pages) by page less(1) 66
man Displays system manual pages man(1) 64
manpath Determines the search path for system manual pages manpath(1) 65
whatis Locates manual pages with a given keyword in its description

whatis(1) 67

Copyright © 2012 Linup Front GmbH

70 5 Getting Help

Summary

• “help ⟨command⟩” explains internal bash commands. Many external com-
mands support a --help option.

• Most programs come with manual pages that can be perused using man.
apropos searches all manual pages for keywords, whatis looks for manual
page names.

• For some programs, info pages are an alternative to manual pages.
• HOWTOs form a problem-oriented kind of documentation.
• There is a multitude of interesting Linux resources on the World Wide Web

and USENET.

Copyright © 2012 Linup Front GmbH

6
Files: Care and Feeding

Contents

6.1 File and Path Names 72
6.1.1 File Names . 72
6.1.2 Directories . 73
6.1.3 Absolute and Relative Path Names 74

6.2 Directory Commands 75
6.2.1 The Current Directory: cd & Co. 75
6.2.2 Listing Files and Directories—ls 76
6.2.3 Creating and Deleting Directories: mkdir and rmdir 77

6.3 File Search Patterns 78
6.3.1 Simple Search Patterns 78
6.3.2 Character Classes 80
6.3.3 Braces . 81

6.4 Handling Files . 82
6.4.1 Copying, Moving and Deleting—cp and Friends. 82
6.4.2 Linking Files—ln and ln -s 84
6.4.3 Displaying File Content—more and less 87
6.4.4 Searching Files—find 87
6.4.5 Finding Files Quickly—locate and slocate 91

Goals

• Being familiar with Linux conventions concerning file and directory names
• Knowing the most important commands to work with files and directories
• Being able to use shell filename search patterns

Prerequisites

• Using a shell
• Use of a text editor (qv. Chapter 3)

grd1-dateien.tex ()

72 6 Files: Care and Feeding

6.1 File and Path Names

6.1.1 File Names

One of the most important services of an operating system like Linux consists
of storing data on permanent storage media like hard disks or USB keys and re-
trieving them later. To make this bearable for humans, similar data are usually
collected into “files” that are stored on the medium under a name.files

B Even if this seems trivial to you, it is by no means a given. In former times,
some operating systems made it necessary to know abominations like track
numbers on a disk in order to retrieve one’s data.

Thus, before we can explain to you how to handle files, we need to explain to
you how Linux names files.

In Linux file names, you are essentially allowed to use any character that yourAllowed characters

computer can display (and then some). However, since some of the characters
have a special meaning, we would recommend against their use in file names.
Only two characters are completely disallowed, the slash and the zero byte (the
character with ASCII value 0). Other characters like spaces, umlauts, or dollar
signs may be used freely, but must usually be escaped on the command line by
means of a backslash or quotes in order to avoid misinterpretations by the shell.

A An easy trap for beginners to fall into is the fact that Linux distinguishes
uppercase and lowercase letters in file names. Unlike Windows, where up-Letter case

percase and lowercase letters in file names are displayed but treated the
same, Linux considers x-files and X-Files two different file names.

Under Linux, file names may be “quite long”—there is no definite upper
bound, since the maximum depends on the “file system”, which is to say the
specific way bytes are arranged on the medium (there are several methods on
Linux). A typical upper limit is 255 characters—but since such a name would
take somewhat more than three lines on a standard text terminal this shouldn’t
really cramp your style.

A further difference from DOS and Windows computers is that Linux does not
use suffixes to characterise a file’s “type”. Hence, the dot is a completely ordi-suffixes

nary character within a file name. You are free to store a text as mumble.txt, but
mumble would be just as acceptable in principle. This should of course not turn you
off using suffixes completely—you do after all make it easier to identify the file
content.

B Some programs insist on their input files having specific suffixes. The C
compiler, gcc, for example, considers files with names ending in “.c” C
source code, those ending in “.s” assembly language source code, and
those ending in “.o” precompiled object files.

You may freely use umlauts and other special characters in file names. How-special characters

ever, if files are to be used on other systems it is best to stay away from special
characters in file names, as it is not guaranteed that they will show up as the same
characters elsewhere.

A What happens to special characters also depends on your locale settings,locale settings

since there is no general standard for representing characters exceeding the
ASCII character set (128 characters covering mostly the English language,
digits and the most common special characters). Widely used encodings
are, for example, ISO 8859-1 and ISO 8859-15 (popularly know as ISO-Latin-
1 and ISO-Latin-9, respectively … don’t ask) as well as ISO 10646, casually
and not quite correctly called “Unicod” and usually encoded as “UTF-8”.
File names you created while encoding 𝑋 was active may look completely
different when you look at the directory while encoding 𝑌 is in force. The
whole topic is nothing you want to think about during meals.

Copyright © 2012 Linup Front GmbH

6.1 File and Path Names 73

A Should you ever find yourself facing a pile of files whose names are en-
coded according to the wrong character set, the convmv program, which can convmv

convert file names between various character encodings, may be able to help
you. (You will probably have to install it yourself since it is not part of the
standard installation of most distributions.) However, you should really
get down to this only after working through the rest of this chapter, as we
haven’t even explained the regular mv yet …

All characters from the following set may be used freely in file names: Portable file names

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789+-._

However, you should pay attention to the following hints:

• To allow moving files between Linux and older Unix systems, the length of
a file name should be at most 14 characters. (Make that “ancient”, really.)

• File names should always start with one of the letters or a digit; the other
four characters can be used without problems only inside a file name.

These conventions are easiest to understand by looking at some examples. Allow-
able file names would be, for instance:

X-files

foo.txt.bak

50.something

7_of_9

On the contrary, problems would be possible (if not likely or even assured) with:

-10°F Starts with ‘‘- ’’, includes special character
.profile Will be hidden
3/4-metre Contains illegal character
Smörrebröd Contains umlauts

As another peculiarity, file names starting with a dot (“.”) will be skipped in Hidden files

some places, for example when the files within a directory are listed—files with
such names are considered “hidden”. This feature is often used for files contain-
ing settings for programs and which should not distract users from more impor-
tant files in directory listings.

B For DOS and Windows experts: These systems allow “hiding” files by
means of a “file attribute” which can be set independently of the file’s
name. Linux and Unix do not support such a thing.

6.1.2 Directories

Since potentially many users may work on the same Linux system, it would be
problematic if each file name could occur just once. It would be difficult to make
clear to user Joe that he cannot create a file called letter.txt since user Sue already
has a file by that name. In addition, there must be a (convenient) way of ensuring
that Joe cannot read all of Sue’s files and the other way round.

For this reason, Linux supports the idea of hierarchical “directories” which are
used to group files. File names do not need to be unique within the whole system,
but only within the same directory. This means in particular that the system can
assign different directories to Joe and Sue, and that within those they may call
their files whatever they please without having to worry about each other’s files.

Copyright © 2012 Linup Front GmbH

74 6 Files: Care and Feeding

In addition, we can forbid Joe from accessing Sue’s directory (and vice versa) and
no longer need to worry about the individual files within them.

On Linux, directories are simply files, even though you cannot access them
using the same methods you would use for “plain” files. However, this implies
that the rules we discussed for file names (see the previous section) also apply to
the names of directories. You merely need to learn that the slash (“/”) serves toslash

separate file names from directory names and directory names from one another.
joe/letter.txt would be the file letter.txt in the directory joe.

Directories may contain other directories (this is the term “hierarchical” we
mentioned earlier), which results in a tree-like structure (inventively called a “di-directory tree

rectory tree”). A Linux system has a special directory which forms the root of the
tree and is therefore called the “root directory”. Its name is “/” (slash).

B In spite of its name, the root directory has nothing to do with the system
administrator, root. It’s just that their names are similar.

B The slash does double duty here—it serves both as the name of the root
directory and as the separator between other directory names. We’ll come
back to this presently.

The basic installation of common Linux distributions usually contains tens of
thousands of files in a directory hierarchy that is mostly structured according
to certain conventions. We shall tell you more about this directory hierarchy in
Chapter 10.

6.1.3 Absolute and Relative Path Names

Every file in a Linux system is described by a name which is constructed by start-
ing at the root directory and mentioning every directory down along the path to
the one containing the file, followed by the name of the file itself. For example,
/home/joe/letter.txt names the file letter.txt, which is located within the joe direc-
tory, which in turn is located within the home directory, which in turn is a direct
descendant of the root directory. A name that starts with the root directory is
called an “absolute path name”—we talk about “path names” since the name de-absolute path name

scribes a “path” through the directory tree, which may contain directory and file
names (i. e., it is a collective term).

Each process within a Linux system has a “current directory” (often also called
“working directory”). File names are searched within this directory; letter.txt

is thus a convenient abbreviation for “the file called letter.txt in the current di-
rectory”, and sue/letter.txt stands for “the file letter.txt within the sue directory
within the current directory”. Such names, which start from the current directory,
are called “relative path names”.relative path names

B It is trivial to tell absolute from relative path names: A path name starting
with a “/” is absolute; all others are relative.

B The current directory is “inherited” between parent and child processes. So
if you start a new shell (or any program) from a shell, that new shell uses
the same current directory as the shell you used to start it. In your new
shell, you can change into another directory using the cd command, but the
current directory of the old shell does not change—if you leave the new
shell, you are back to the (unchanged) current directory of the old shell.

There are two convenient shortcuts in relative path names (and even absoluteshortcuts

ones): The name “..” always refers to the directory above the directory in question
in the directory tree—for example, in the case of /home/joe, /home. This frequently
allows you to refer conveniently to files in a “side branch” of the directory tree
as viewed from the current directory, without having to resort to absolute path
names. Assume /home/joe has the subdirectories letters and novels. With letters

as the current directory, you could refer to the ivanhoe.txt file within the novels

Copyright © 2012 Linup Front GmbH

6.2 Directory Commands 75

directory by means of the relative path name ../novels/ivanhoe.txt, without having
to use the unwieldy absolute path name /home/joe/novels/ivanhoe.txt.

The second shortcut does not make sense quite as obviously: the “.” name
within a directory always stands for the directory itself. It is not immediately
clear why one would need a method to refer to a directory which one has already
reached, but there are situations where this comes in quite handy. For example,
you may know (or could look up in Chapter 9) that the shell searches program
files for external commands in the directories listed in the environment variable
PATH. If you, as a software developer, want to invoke a program, let’s call it prog,
which (a) resides in a file within the current directory, and (b) this directory is not
listed in PATH (always a good idea for security reasons), you can still get the shell
to start your file as a program by saying

$./prog

without having to enter an absolute path name.

B As a Linux user you have a “home directory” which you enter immediately
after logging in to the system. The system administrator determines that
directory’s name when they create your user account, but it is usually called
the same as your user name and located below /home—something like /home/

joe for the user joe.

6.2 Directory Commands

6.2.1 The Current Directory: cd & Co.

You can use the cd shell command to change the current directory: Simply give Changing directory

the desired directory as a parameter:

$ cd letters Change to the letters directory
$ cd .. Change to the directory above

If you do not give a parameter you will end up in your home directory:

$ cd

$ pwd

/home/joe

You can output the absolute path name of the current directory using the pwd current directory

(“print working directory”) command.
Possibly you can also see the current directory as part of your prompt: Depend- prompt

ing on your system settings there might be something like

joe@red:~/letters> _

where ~/letters is short for /home/joe/letters; the tilde (“~”) stands for the current
user’s home directory.

B The “cd -” command changes to the directory that used to be current before
the most recent cd command. This makes it convenient to alternate between
two directories.

Exercises

C 6.1 [2] In the shell, is cd an internal or an external command? Why?

C 6.2 [3] Read about the pushd, popd, and dirs commands in the bash man page.
Convince yourself that these commands work as described there.

Copyright © 2012 Linup Front GmbH

76 6 Files: Care and Feeding

Table 6.1: Some file type designations in ls

File type Colour Suffix (ls -F) Type letter (ls -l)
plain file black none -

executable file green * -

directory blue / d

link cyan @ l

Table 6.2: Some ls options

Option Result
-a or --all Displays hidden files as well
-i or --inode Displays the unique file number (inode number)
-l or --format=long Displays extra information
-o or --no-color Omits colour-coding the output
-p or -F Marks file type by adding a special character
-r or --reverse Reverses sort order
-R or --recursive Recurses into subdirectories (DOS: DIR/S)
-S or --sort=size Sorts files by size (longest first)
-t or --sort=time Sorts file by modification time (newest first)
-X or --sort=extension Sorts file by extension (“file type”)

6.2.2 Listing Files and Directories—ls

To find one’s way around the directory tree, it is important to be able to find out
which files and directories are located within a directory. The ls (“list”) command
does this.

Without options, this information is output as a multi-column table sorted byTabular format

file name. With colour screens being the norm rather than the exception today, it
has become customary to display the names of files of different types in various
colours. (We have not talked about file types yet; this topic will be mentioned in
Chapter 10.)

B Thankfully, by now most distributions have agreed about the colours to use.
Table 6.1 shows the most common assignment.

B On monochrome monitors—which can still be found—, the options -F or -p

recommend themselves. These will cause special characters to be appended
to the file names according to the file’s type. A subset of these characters is
given in Table 6.1.

You can display hidden files (whose names begin with a dot) by giving the -aHidden files

(“all”) option. Another very useful option is -l (a lowercase “L”, for “long”, rather
than the digit “1”). This displays not only the file names, but also some additionalAdditional information

information about each file.

B Some Linux distributions pre-set abbreviations for some combinations of
helpful options; the SUSE distributions, for example, use a simple l as an
abbreviation of “ls -alF”. “ll” and “la” are also abbreviations for ls variants.

Here is an example of ls without and with -l:

$ ls

file.txt

file2.dat

$ ls -l

Copyright © 2012 Linup Front GmbH

6.2 Directory Commands 77

-rw-r--r-- 1 joe users 4711 Oct 4 11:11 file.txt

-rw-r--r-- 1 joe users 333 Oct 2 13:21 file2.dat

In the first case, all visible (non-hidden) files in the directory are listed; the second
case adds the extra information.

The different parts of the long format have the following meanings: The first Long format

character gives the file type (see Chapter 10); plain files have “-”, directories “d”
and so on (“type character” in Table 6.1).

The next nine characters show the access permissions. Next there are a refer-
ence counter, the owner of the file (joe here), and the file’s group (users). After the
size of file in bytes, you can see the date and time of the last modification of the
file’s content. On the very right there is the file’s name.

A Depending on the language you are using, the date and time columns in par-
ticular may look completely different than the ones in our example (which
we generated using the minimal language environment “C”). This is usu-
ally not a problem in interactive use, but may prove a major nuisance if you
try to take the output of “ls -l” apart in a shell script. (Without wanting to
anticipate the training manual Advanced Linux, we recommend setting the
language environment to a defined value in shell scripts.)

B If you want to see the extra information for a directory (such as /tmp), “ls -l

/tmp” doesn’t really help, because ls will list the data for all the files within
/tmp. Use the -d option to suppress this and obtain the information about
/tmp itself.

ls supports many more options than the ones mentioned here; a few of the
more important ones are shown in Table 6.2.

In the LPI exams, Linux Essentials and LPI-101, nobody expects you to know
all 57 varieties of ls options by heart. However, you may wish to commit the
most import half dozen or so—the content of Table 6.2, approximately—to
memory.

Exercises

C 6.3 [1] Which files does the /boot directory contain? Does the directory have
subdirectories and, if so, which ones?

C 6.4 [2] Explain the difference between ls with a file name argument and ls

with a directory name argument.

C 6.5 [2] How do you tell ls to display information about a directory rather
than the files in that directory, if a directory name is passed to the program?
(Hint: Documentation.)

6.2.3 Creating and Deleting Directories: mkdir and rmdir

To keep your own files in good order, it makes sense to create new directories. You
can keep files in these “folders” according to their subject matter (for example).
Of course, for further structuring, you can create further directories within such
directories—your ambition will not be curbed by arbitrary limits.

To create new directories, the mkdir command is available. It requires one or Creating directories

more directory names as arguments, otherwise you will only obtain an error mes-
sage instead of a new directory. To create nested directories in a single step, you
can use the -p option, otherwise the command assumes that all directories in a
path name except the last one already exist. For example:

Copyright © 2012 Linup Front GmbH

78 6 Files: Care and Feeding

$ mkdir pictures/holiday

mkdir: cannot create directory `pictures/holiday': No such file�

� or directory

$ mkdir -p pictures/holiday

$ cd pictures

$ ls -F

holiday/

Sometimes a directory is no longer required. To reduce clutter, you can removeRemoving directories

it using the rmdir (“remove directory”) command.
As with mkdir, at least one path name of a directory to be deleted must be given.

In addition, the directories in question must be empty, i. e., they may not contain
entries for files, subdirectories, etc. Again, only the last directory in every name
will be removed:

$ rmdir pictures/holiday

$ ls -F

�����

pictures/

�����

With the -p option, all empty subdirectories mentioned in a name can be removed
in one step, beginning with the one on the very right.

$ mkdir -p pictures/holiday/summer

$ rmdir pictures/holiday/summer

$ ls -F pictures

pictures/holiday/

$ rmdir -p pictures/holiday

$ ls -F pictures

ls: pictures: No such file or directory

Exercises

C 6.6 [!2] In your home directory, create a directory grd1-test with subdirecto-
ries dir1, dir2, and dir3. Change into directory grd1-test/dir1 and create (e. g.,
using a text editor) a file called hello containing “hello”. In grd1-test/dir2,
create a file howdy containing “howdy”. Check that these files do exist. Delete
the subdirectory dir3 using rmdir. Next, attempt to remove the subdirectory
dir2 using rmdir. What happens, and why?

6.3 File Search Patterns

6.3.1 Simple Search Patterns

You will often want to apply a command to several files at the same time. For
example, if you want to copy all files whose names start with “p” and end with
“.c” from the prog1 directory to the prog2 directory, it would be quite tedious to
have to name every single file explictly—at least if you need to deal with more
than a couple of files! It is much more convenient to use the shell’s search patterns.search patterns

If you specify a parameter containing an asterisk on the shell command line—asterisk
like

prog1/p*.c

Copyright © 2012 Linup Front GmbH

6.3 File Search Patterns 79

—the shell replaces this parameter in the actual program invocation by a sorted list
of all file names that “match” the parameter. “Match” means that in the actual file
name there may be an arbitrary-length sequence of arbitrary characters in place
of the asterisk. For example, names like

prog1/p1.c

prog1/polly.c

prog1/pop-rock.c

prog1/p.c

are eligible (note in particular the last name in the example—“arbitrary length”
does include “length zero”!). The only character the asterisk will not match is—
can you guess it?—the slash; it is usually better to restrict a search pattern like the
asterisk to the current directory.

B You can test these search patterns conveniently using echo. The

$ echo prog1/p*.c

command will output the matching file names without any obligation or
consequence of any kind.

B If you really want to apply a command to all files in the directory tree starting
with a particular directory, there are ways to do that, too. We will discuss
this in Section 6.4.4.

The search pattern “*” describes “all files in the current directory”—excepting All files

hidden files whose name starts with a dot. To avert possibly inconvenient sur-
prises, search patterns diligently ignore hidden files unless you explicitly ask for
them to be included by means of something like “.*”.

A You may have encountered the asterisk at the command line of operating
systems like DOS or Windows1 and may be used to specifying the “*.*”
pattern to refer to all files in a directory. On Linux, this is not correct—the
“*.*” pattern matches “all files whose name contains a dot”, but the dot isn’t
mandatory. The Linux equivalent, as we said, is “*”.

A question mark as a search pattern stands for exactly one arbitrary character question mark

(again excluding the slash). A pattern like

p?.c

thus matches the names

p1.c

pa.c

p-.c

p..c

(among others). Note that there must be one character—the “nothing” option
does not exist here.

You should take particular care to remember a very important fact: The expan-
sion of search pattern is the responsibility of the shell! The commands that you ex-
ecute usually know nothing about search patterns and don’t care about them,
either. All they get to see are lists of path names, but not where they come
from—i. e., whether they have been typed in directly or resulted from the ex-
pansion of search patterns.

1You’re probably too young for CP/M.

Copyright © 2012 Linup Front GmbH

80 6 Files: Care and Feeding

B Incidentally, nobody says that the results of search patterns always need to
be interpreted as path names. For example, if a directory contains a file
called “-l”, a “ls *” in that directory will yield an interesting and perhaps
surprising result (see Exercise 6.9).

B What happens if the shell cannot find a file whose name matches the search
pattern? In this case the command in question is passed the search pattern
as such; what it makes of that is its own affair. Typically such search patterns
are interpreted as file names, but the “file” in question is not found and an
error message is issued. However, there are commands that can do useful
things with search patterns that you pass them—with them, the challenge
is really to ensure that the shell invoking the command does not try to cut
in with its own expansion. (Cue: quotes)

6.3.2 Character Classes

A somewhat more precise specification of the matching characters in a search pat-
tern is offered by “character classes”: In a search pattern of the form

prog[123].c

the square brackets match exactly those characters that are enumerated within
them (no others). The pattern in the example therefore matches

prog1.c

prog2.c

prog3.c

but not

prog.c There needs to be exactly one character
prog4.c 4 was not enumerated
proga.c a neither
prog12.c Exactly one character, please

As a more convenient notation, you may specify ranges as inranges

prog[1-9].c

[A-Z]bracadabra.txt

The square brackets in the first line match all digits, the ones in the second all
uppercase letters.

A Note that in the common character encodings the letters are not contiguous:
A pattern like

prog[A-z].c

not only matches progQ.c and progx.c, but also prog_.c. (Check an ASCII table,
e. g. using “man ascii”.) If you want to match “uppercase and lowercase
letters only”, you need to use

prog[A-Za-z].c

A A construct like

prog[A-Za-z].c

does not catch umlauts, even if they look suspiciously like letters.

Copyright © 2012 Linup Front GmbH

6.3 File Search Patterns 81

As a further convenience, you can specify negated character classes, which are negated classes

interpreted as “all characters except these”: Something like

prog[!A-Za-z].c

matches all names where the character between “g” and “.” is not a letter. As
usual, the slash is excepted.

6.3.3 Braces

The expansion of braces in expressions like

{red,yellow,blue}.txt

is often mentioned in conjunction with shell search patterns, even though it is
really just a distant relative. The shell replaces this by

red.txt yellow.txt blue.txt

In general, a word on the command line that contains several comma-separated
pieces of text within braces is replaced by as many words as there are pieces of
text between the braces, where in each of these words the whole brace expression
is replaced by one of the pieces. This replacement is purely based on the command
line text and is completely independent of the existence or non-existence of any files or
directories—unlike search patterns, which always produce only those names that
actually exist as path names on the system.

You can have more than one brace expression in a word, which will result in
the cartesian product, in other words all possible combinations: cartesian product

{a,b,c}{1,2,3}.dat

produces

a1.dat a2.dat a3.dat b1.dat b2.dat b3.dat c1.dat c2.dat c3.dat

This is useful, for example, to create new directories systematically; the usual
search patterns cannot help there, since they can only find things that already
exist:

$ mkdir -p revenue/200{8,9}/q{1,2,3,4}

Exercises

C 6.7 [!1] The current directory contains the files

prog.c prog1.c prog2.c progabc.c prog

p.txt p1.txt p21.txt p22.txt p22.dat

Which of these names match the search patterns (a) prog*.c, (b) prog?.c, (c)
p?*.txt, (d) p[12]*, (e) p*, (f) *.*?

C 6.8 [!2] What is the difference between “ls” and “ls *”? (Hint: Try both in a
directory containing subdirectories.)

C 6.9 [2] Explain why the following command leads to the output shown:

Copyright © 2012 Linup Front GmbH

82 6 Files: Care and Feeding

Table 6.3: Options for cp

Option Result
-b (backup) Makes backup copies of existing target files by appending a tilde to their

names
-f (force) Overwrites existing target files without prompting
-i (engl. interactive) Asks (once per file) whether existing target files should be overwritten
-p (engl. preserve) Tries to preserve all attributes of the source file for the copy
-R (engl. recursive) Copies directories with all their content
-u (engl. update) Copies only if the source file is newer than the target file (or the target file

doesn’t exist)
-v (engl. verbose) Displays all activity on screen

$ ls

-l file1 file2 file3

$ ls *

-rw-r--r-- 1 joe users 0 Dec 19 11:24 file1

-rw-r--r-- 1 joe users 0 Dec 19 11:24 file2

-rw-r--r-- 1 joe users 0 Dec 19 11:24 file3

C 6.10 [2] Why does it make sense for “*” not to match file names starting with
a dot?

6.4 Handling Files

6.4.1 Copying, Moving and Deleting—cp and Friends

You can copy arbitrary files using the cp (“copy”) command. There are two basicCopying files

approaches:
If you tell cp the source and target file names (two arguments), then a 1 ∶ 1 copy1 ∶ 1 copy

of the content of the source file will be placed in the target file. Normally cp does
not ask whether it should overwrite the target file if it already exists, but just does
it—caution (or the -i option) is called for here.

You can also give a target directory name instead of a target file name. The
source file will then be copied to that directory, keeping its old name.

$ cp list list2

$ cp /etc/passwd .

$ ls -l

-rw-r--r-- 1 joe users 2500 Oct 4 11:11 list

-rw-r--r-- 1 joe users 2500 Oct 4 11:25 list2

-rw-r--r-- 1 joe users 8765 Oct 4 11:26 passwd

In this example, we first created an exact copy of file list under the name list2.
After that, we copied the /etc/passwd file to the current directory (represented by
the dot as a target directory name). The most important cp options are listed in
Table 6.3.

Instead of a single source file, a longer list of source files (or a shell wildcardList of source files

pattern) is allowed. However, this way it is not possible to copy a file to a different
name, but only to a different directory. While in DOS it is possible to use “COPY
*.TXT *.BAK” to make a backup copy of every TXT file to a file with the same name
and a BAK suffix, the Linux command “cp *.txt *.bak” usually fails with an error
message.

Copyright © 2012 Linup Front GmbH

6.4 Handling Files 83

B To understand this, you have to visualise how the shell executes this com-
mand. It tries first to replace all wildcard patterns with the corresponding
file names, for example *.txt by letter1.txt and letter2.txt. What happens
to *.bak depends on the expansion of *.txt and on whether there are match-
ing file names for *.bak in the current directory—but the outcome will al-
most never be what a DOS user would expect! Usually the shell will pass
the cp command the unexpanded *.bak wildcard pattern as the final argu-
ment, which fails from the point of view of cp since this is (unlikely to be)
an existing directory name.

While the cp command makes an exact copy of a file, physically duplicating the
file on the storage medium or creating a new, identical copy on a different storage
medium, the mv (“move”) command serves to move a file to a different place or Move/rename files

change its name. This is strictly an operation on directory contents, unless the file
is moved to a different file system—for example from a hard disk partition to a
USB key. In this case it is necessary to move the file around physically, by copying
it to the new place and removing it from the old.

The syntax and rules of mv are identical to those of cp—you can again specify
a list of source files instead of merely one, and in this case the command expects
a directory name as the final argument. The main difference is that mv lets you
rename directories as well as files.

The -b, -f, -i, -u, and -v options of mv correspond to the eponymous ones de-
scribed with cp.

$ mv passwd list2

$ ls -l

-rw-r--r-- 1 joe users 2500 Oct 4 11:11 list

-rw-r--r-- 1 joe users 8765 Oct 4 11:26 list2

In this example, the original file list2 is replaced by the renamed file passwd. Like
cp, mv does not ask for confirmation if the target file name exists, but overwrites
the file mercilessly.

The command to delete files is called rm (“remove”). To delete a file, you must Deleting files

have write permission in the corresponding directory. Therefore you are “lord of
the manor” in your own home directory, where you can remove even files that do
not properly belong to you.

A Write permission on a file, on the other hand, is completely irrelevant as far
as deleting that file is concerned, as is the question to which user or group
the file belongs.

rm goes about its work just as ruthlessly as cp or mv—the files in question are Deleting is forever!

obliterated from the file system without confirmation. You should be especially
careful, in particular when shell wildcard patterns are used. Unlike in DOS, the
dot in a Linux file name is a character without special significance. For this rea-
son, the “rm *” command deletes all non-hidden files from the current directory.
Subdirectories will remain unscathed; with “rm -r *” they can also be removed.

A As the system administrator, you can trash the whole system with a com-
mand such as “rm -rf /”; utmost care is required! It is easy to type “rm -rf

foo *” instead of “rm -rf foo*”.

Where rm removes all files whose names are passed to it, “rm -i” proceeds a little
more carefully:

$ rm -i lis*

rm: remove 'list'? n

rm: remove 'list2'? y

$ ls -l

-rw-r--r-- 1 joe users 2500 Oct 4 11:11 list

Copyright © 2012 Linup Front GmbH

84 6 Files: Care and Feeding

The example illustrates that, for each file, rm asks whether it should be removed
(“y” for “yes”) or not (“n” for “no”).

B Desktop environments such as KDE usually support the notion of a “dust-
bin” which receives files deleted from within the file manager, and which
makes it possible to retrieve files that have been removed inadvertently.
There are similar software packages for the command line.

In addition to the -i and -r options, rm allows cp’s -v and -f options, with similar
results.

Exercises

C 6.11 [!2] Create, within your home directory, a copy of the file /etc/services

called myservices. Rename this file to srv.dat and copy it to the /tmp directory
(keeping the new name intact). Remove both copies of the file.

C 6.12 [1] Why doesn’t mv have an -R option (like cp has)?

C 6.13 [!2] Assume that one of your directories contains a file called “-file”
(with a dash at the start of the name). How would you go about removing
this file?

C 6.14 [2] If you have a directory where you do not want to inadvertently fall
victim to a “rm *”, you can create a file called “-i” there, as in

$ > -i

(will be explained in more detail in Chapter 8). What happens if you now
execute the “rm *” command, and why?

6.4.2 Linking Files—ln and ln -s

Linux allows you to create references to files, so-called “links”, and thus to assign
several names to the same file. But what purpose does this serve? The applica-
tions range from shortcuts for file and directory names to a “safety net” against
unwanted file deletions, to convenience for programmers, to space savings for
large directory trees that should be available in several versions with only small
differences.

The ln (“link”) command assigns a new name (second argument) to a file in
addition to its existing one (first argument):

$ ln list list2

$ ls -l

-rw-r--r-- 2 joe users 2500 Oct 4 11:11 list

-rw-r--r-- 2 joe users 2500 Oct 4 11:11 list2

The directory now appears to contain a new file called list2. Actually, there areA file with multiple names

just two references to the same file. This is hinted at by the reference counter inreference counter
the second column of the “ls -l” output. Its value is 2, denoting that the file really
has two names. Whether the two file names really refer to the same file can only be
decided using the “ls -i” command. If this is the case, the file number in the first
column must be identical for both files. File numbers, also called inode numbers,inode numbers

identify files uniquely within their file system:

$ ls -i

876543 list 876543 list2

Copyright © 2012 Linup Front GmbH

6.4 Handling Files 85

B “Inode” is short for “indirection node”. Inodes store all the information that
the system has about a file, except for the name. There is exactly one inode
per file.

If you change the content of one of the files, the other’s content changes as well,
since in fact there is only one file (with the unique inode number 876543). We only
gave that file another name.

B Directories are simply tables mapping file names to inode numbers. Obvi-
ously there can be several entries in a table that contain different names but
the same inode number. A directory entry with a name and inode number
is called a “link”.

You should realise that, for a file with two links, it is quite impossible to find
out which name is “the original”, i. e., the first parameter within the ln command.
From the system’s point of view both names are completely equivalent and indis-
tinguishable.

A Incidentally, links to directories are not allowed on Linux. The only excep-
tions are “.” and “..”, which the system maintains for each directory. Since
directories are also files and have their own inode numbers, you can keep
track of how the file system fits together internally. (See also Exercise 6.19).

Deleting one of the two files decrements the number of names for file no.
876543 (the reference counter is adjusted accordingly). Not until the reference
counter reachers the value of 0 will the file’s content actually be removed.

$ rm list

$ ls -li

876543 -rw-r--r-- 1 joe users 2500 Oct 4 11:11 list2

B Since inode numbers are only unique within the same physical file system
(disk partition, USB key, …), such links are only possible within the same
file system where the file resides.

B The explanation about deleting a file’s content was not exactly correct: If the
last file name is removed, a file can no longer be opened, but if a process is
still using the file it can go on to do so until it explicitly closes the file or ter-
minates. In Unix software this is a common idiom for handling temporary
files that are supposed to disappear when the program exits: You create
them for reading and writing and “delete” them immediately afterwards
without closing them within your program. You can then write data to the
file and later jump back to the beginning to reread them.

B You can invoke ln not just with two file name arguments but also with one
or with many. In the first case, a link with the same name as the original
will be created in the current directory (which should really be different
from the one where the file is located), in the second case all named files
will be “linked” under their original names into the diréctory given as the
last argument (think mv).

This is not all, however: There are two different kinds of link in Linux systems.
The type explained above is the default case for the ln command and is called a
“hard link”. It always uses a file’s inode number for identification. In addition,
there are symbolic links (also called “soft links” in contrast to “hard links”). Sym- symbolic links

bolic links are really files containing the name of the link’s “target file”, together
with a flag signifying that the file is a symbolic link and that accesses should be
redirected to the target file. Unlike with hard links, the target file does not “know”
about the symbolic link. Creating or deleting a symbolic link does not impact the

Copyright © 2012 Linup Front GmbH

86 6 Files: Care and Feeding

target file in any way; when the target file is removed, however, the symbolic link
“dangles”, i.e., points nowhere (accesses elicit an error message).

In contrast to hard links, symbolic links allow links to directories as well as filesLinks to directories

on different physical file systems. In practice, symbolic links are often preferred,
since it is easier to keep track of the linkage by means of the path name.

B Symbolic links are popular if file or directory names change but a certain
backwards compatibility is desired. For example, it was agreed that user
mailboxes (that store unread e-mail) should be stored in the /var/mail di-
rectory. Traditionally, this directory was called /var/spool/mail, and many
programs hard-code this value internally. To ease a transition to /var/mail,
a distribution can set up a symbolic link under the name of /var/spool/mail

which points to /var/mail. (This would be impossible using hard links, since
hard links to directories are not allowed.)

To create a symbolic link, you must pass the -s option to ln:

$ ln -s /var/log short

$ ls -l

-rw-r--r-- 1 joe users 2500 Oct 4 11:11 liste2

lrwxrwxrwx 1 joe users 14 Oct 4 11:40 short -> /var/log

$ cd short

$ pwd -P

/var/log

Besides the -s option to create “soft links”, the ln command supports (among oth-
ers) the -b, -f, -i, and -v options discussed earlier on.

To remove symbolic links that are no longer required, delete them using rm just
like plain files. This operation applies to the link rather than the link’s target.

$ cd

$ rm short

$ ls

liste2

Exercises

C 6.15 [!2] In your home directory, create a file with arbitrary content (e. g.,
using “echo Hello >~/hello” or a text editor). Create a hard link to that file
called link. Make sure that the file now has two names. Try changing the
file with a text editor. What happens?

C 6.16 [!2] Create a symbolic link called ~/symlink to the file in the previous ex-
ercise. Check whether accessing the file via the symbolic link works. What
happens if you delete the file (name) the symbolic link is pointing to?

C 6.17 [!2] What directory does the .. link in the “/” directory point to?

C 6.18 [3] Consider the following command and its output:

$ ls -ai /

2 . 330211 etc 1 proc 4303 var

2 .. 2 home 65153 root

4833 bin 244322 lib 313777 sbin

228033 boot 460935 mnt 244321 tmp

330625 dev 460940 opt 390938 usr

Obviously, the / and /home directories have the same inode number. Since
the two evidently cannot be the same directory—can you explain this phe-
nomenon?

Copyright © 2012 Linup Front GmbH

6.4 Handling Files 87

Table 6.4: Keyboard commands for more

Key Result

↩ Scrolls up a line
Scrolls up a screenful

b Scrolls back a screenful
h Displays help
q Quits more

/ ⟨word⟩ ↩ Searches for ⟨word⟩
! ⟨command⟩ ↩ Executes ⟨command⟩ in a subshell

v Invokes editor (vi)
Ctrl + l Redraws the screen

C 6.19 [3] We mentioned that hard links to directories are not allowed. What
could be a reason for this?

C 6.20 [3] How can you tell from the output of “ls -l ~” that a subdirectory of
~ contains no further subdirectories?

C 6.21 [4] (Brainteaser/research exercise:) What requires more space on disk,
a hard link or a symbolic link? Why?

6.4.3 Displaying File Content—more and less

A convenient display of text files on screen is possible using the more command, display of text files

which lets you view long documents page by page. The output is stopped after
one screenful, and “--More--” appears in the final line (possibly followed by the
percentage of the file already displayed). The output is continued after a key press.
The meanings of various keys are explained in Table 6.4.

more also understands some options. With -s (“squeeze”), runs of empty lines Options

are compressed to just one, the -l option ignores page ejects (usually represented
by “^L”) which would otherwise stop the output. The -n ⟨number⟩ option sets the
number of screen lines to ⟨number⟩, otherwise more takes the number from the ter-
minal definition pointed to by TERM.

more’s output is still subject to vexing limitations such as the general impossibil-
ity of moving back towards the beginning of the output. Therefore, the improved
version less (a weak pun—think “less is more”) is more [sic!] commonly seen to- less

day. less lets you use the cursor keys to move around the text as usual, the search
routines have been extended and allow searching both towards the end as well
as towards the beginning of the text. The most common keyboard commands are
summarised in Table 6.5.

As mentioned in Chapter 5, less usually serves as the display program for man-
ual pages via man. All the commands are therefore available when perusing man-
ual pages.

6.4.4 Searching Files—find

Who does not know the following feeling: “There used to be a file foobar … but
where did I put it?” Of course you can tediously sift through all your directories
by hand. But Linux would not be Linux if it did not have something handy to help
you.

The find command searches the directory tree recursively for files matching a
set of criteria. “Recursively” means that it considers subdirectories, their subdirec-
tories and so on. find’s result consists of the path names of matching files, which
can then be passed on to other programs. The following example introduces the
command structure:

Copyright © 2012 Linup Front GmbH

88 6 Files: Care and Feeding

Table 6.5: Keyboard commands for less

Key Result

↓ or e or j or ↩ Scrolls up one line
f or Scrolls up one screenful

↑ or y or k Scrolls back one line
b Scrolls back one screenful

Home or g Jumps to the beginning of the text
End or Shift ⇑ + g Jumps to the end of the text

p ⟨percent⟩ ↩ Jumps to position ⟨percent⟩ (in %) of the text
h Displays help
q Quits less

/ ⟨word⟩ ↩ Searches for ⟨word⟩ towards the end
n Continues search towards the end

? ⟨word⟩ ↩ Searches for ⟨word⟩ towards the beginning
Shift ⇑ + n Continues search towards the beginning

! ⟨command⟩ ↩ Executes ⟨command⟩ in subshell
v Invokes editor (vi)

r or Ctrl + l Redraws screen

$ find . -user joe -print

./list

This searches the current directory including all subdirectories for files belonging
to the user joe. The -print command displays the result (a single file in our case)
on the terminal. For convenience, if you do not specify what to do with matching
files, -print will be assumed.

Note that find needs some arguments to go about its task.

Starting Directory The starting directory should be selected with care. If you
pick the root directory, the required file(s)—if they exist—will surely be found,
but the search may take a long time. Of course you only get to search those files
where you have appropriate privileges.

B An absolute path name for the start directory causes the file names in theAbsolute or relative path names?

output to be absolute, a relative path name for the start directory accord-
ingly produces relative path names.

Instead of a single start directory, you can specify a list of directories that willDirectory list

be searched in turn.

Test Conditions These options describe the requirements on the files in detail.
Table 6.6 shows the most important tests. The find documentation explains many
more.

Table 6.6: Test conditions for find

Test Description
-name Specifies a file name pattern. All shell search pattern characters

are allowed. The -iname option ignores case differences.

Copyright © 2012 Linup Front GmbH

6.4 Handling Files 89

Table 6.7: Logical operators for find

Option Operator Meaning
! Not The following test must not match
-a And Both tests to the left and right of -a must match
-o Or At least one of the tests to the left and right of -o must match

Table 6.6: Test conditions for find

Test Description
-type Specifies a file type (see Section 10.2). This includes:

b block device file
c character device file
d directory
f plain file
l symbolic link
p FIFO (named pipe)
s Unix domain socket

-user Specifies a user that the file must belong to. User names as well
as numeric UIDs can be given.

-group Specifies a group that the file must belong to. As with -user, a
numeric GID can be specified as well as a group name.

-size Specifies a particular file size. Plain numbers signify 512-byte
blocks; bytes or kibibytes can be given by appending c or k, re-
spectively. A preceding plus or minus sign stands for a lower or
upper limit; -size +10k, for example, matches all files bigger than
10 KiB.

-atime (engl. access) allows searching for files based on the time of last
access (reading or writing). This and the next two tests take their
argument in days; …min instead of …time produces 1-minute ac-
curacy.

-mtime (engl. modification) selects according to the time of modification.
-ctime (engl. change) selects according to the time of the last inode

change (including access to content, permission change, renam-
ing, etc.)

-perm Specifies a set of permissions that a file must match. The per-
missions are given as an octal number (see the chmod command.
To search for a permission in particular, the octal number must
be preceded by a minus sign, e.g., -perm -20 matches all files with
group write permission, regardless of their other permissions.

-links Specifies a reference count value that eligible files must match.
-inum Finds links to a file with a given inode number.

If multiple tests are given at the same time, they are implicitly ANDed together—Multiple tests

all of them must match. find does support additional logical operators (see Ta-
ble 6.7).

In order to avoid mistakes when evaluating logical operators, the tests are best
enclosed in parentheses. The parentheses must of course be escaped from the
shell:

$ find . \(-type d -o -name "A*" \) -print

./.

./..

./bilder

./Attic

Copyright © 2012 Linup Front GmbH

90 6 Files: Care and Feeding

$ _

This example lists all names that either refer to directories or that begin with “A”
or both.

Actions As mentioned before, the search results can be displayed on the screen
using the -print option. In addition to this, there are two options, -exec and -ok,
which execute commands incorporating the file names. The single difference be-Executing commands

tween -ok and -exec is that -ok asks the user for confirmation before actually exe-
cuting the command; with -exec, this is tacitly assumed. We will restrict ourselves
to discussing -exec.

There are some general rules governing the -exec option:

• The command following -exec must be terminated with a semicolon (“;”).
Since the semicolon is a special character in most shells, it must be escaped
(e.g., as “\\;” or using quotes) in order to make it visible to find.

• Two braces (“{}”) within the command are replaced by the file name that
was found. It is best to enclose the braces in quotes to avoid problems with
spaces in file names.

For example:

$ find . -user joe -exec ls -l '{}' \;

-rw-r--r-- 1 joe users 4711 Oct 4 11:11 file.txt

$ _

This example searches for all files within the current directory (and below) be-
longing to user test, and executes the “ls -l” command for each of them. The
following makes more sense:

$ find . -atime +13 -exec rm -i '{}' \;

This interactively deletes all files within the current directory (and below) that
have not been accessed for two weeks.

B Sometimes—say, in the last example above—it is very inefficient to use -exec

to start a new process for every single file name found. In this case, the xargs

command, which collects as many file names as possible before actually ex-
ecuting a command, can come in useful:

$ find . -atime +13 | xargs -r rm -i

xargs reads its standard input up to a (configurable) maximum of characters
or lines and uses this material as arguments for the specified command (here
rm). On input, arguments are separated by space characters (which can be
escaped using quotes or “\”) or newlines. The command is invoked as often
as necessary to exhaust the input.—The -r option ensures that rm is executed
only if find actually sends a file name; otherwise it would be executed at least
once.

B Weird filenames can get the find/xargs combination in trouble, for example
ones that contain spaces or, indeed, newlines which may be mistaken as
separators. The silver bullet consists of using the “-print0” option to find,
which outputs the file names just as “-print” does, but uses null bytes to
separate them instead of newlines. Since the null byte is not a valid character
in path names, confusion is no longer possible. xargs must be invoked using
the “-0” option to understand this kind of input:

$ find . -atime +13 -print0 | xargs -0r rm -i

Copyright © 2012 Linup Front GmbH

6.4 Handling Files 91

Exercises

C 6.22 [!2] Find all files on your system which are longer than 1 MiB, and
output their names.

C 6.23 [2] How could you use find to delete a file with an unusual name (e. g.,
containing invisible control characters or umlauts that older shells cannot
deal with)?

C 6.24 [3] (Second time through the book.) How would you ensure that files
in /tmp which belong to you are deleted once you log out?

6.4.5 Finding Files Quickly—locate and slocate

The find command searches files according to many different criteria but needs to
walk the complete directory tree below the starting directory. Depending on the
tree size, this may take considerable time. For the typical application—searching
files with particular names—there is an accelerated method.

The locate command lists all files whose names match a given shell wildcard
pattern. In the most trivial case, this is a simple string of characters:

$ locate letter.txt

/home/joe/Letters/letter.txt

/home/joe/Letters/grannyletter.txt

/home/joe/Letters/grannyletter.txt~

�����

A Although locate is a fairly important service (as emphasised by the fact that
it is part of the LPIC1 curriculum), not all Linux distributions include it as
part of the default installation.

For example, if you are using a SUSE distribution, you must explicitly install
the findutils-locate package before being able to use locate.

The ”‘*”’, ”‘?”’, and ”‘[…]”’ characters mean the same thing to locate as they do to
the shell. But while a query without wildcard characters locates all file names that
contain the pattern anywhere, a query with wildcard characters returns only those
names which the pattern describes completely—from beginning to end. Therefore
pattern queries to locate usually start with “*”:

$ locate "*/letter.t*"

/home/joe/Letters/letter.txt

/home/joe/Letters/letter.tab

�����

B Be sure to put quotes around locate queries including shell wildcard char-
acters, to keep the shell from trying to expand them.

The slash (“/”) is not handled specially:

$ locate Letters/granny

/home/joe/Letters/grannyletter.txt

/home/joe/Letters/grannyletter.txt~

locate is so fast because it does not walk the file system tree, but checks a
“database” of file names that must have been previously created using the updat-

edb program. This means that locate does not catch files that have been added to
the system since the last database update, and conversely may output the names
of files that have been deleted in the meantime.

Copyright © 2012 Linup Front GmbH

92 6 Files: Care and Feeding

B You can get locate to return existing files only by using the “-e” option, but
this negates locate’s speed advantage.

The updatedb program constructs the database for locate. Since this may take
considerable time, your system administrator usually sets this up to run when
the system does not have a lot to do, anyway, presumably late at night.

B The cron service which is necessary for this will be explained in detail in
Advanced Linux. For now, remember that most Linux distributions come
with a mechanism which causes updatedb to be run every so often.

As the system administrator, you can tell updatedb which files to consider when
setting up the database. How that happens in detail depends on your distribution:
updatedb itself does not read a configuration file, but takes its settings from the
command line and (partly) environment variables. Even so, most distributions
call updatedb from a shell script which usually reads a file like /etc/updatedb.conf or
/etc/sysconfig/locate, where appropriate environment variables can be set up.

B You may find such a file, e.g., in /etc/cron.daily (details may vary according
to your distribution).

You can, for instance, cause updatedb to search certain directories and omit oth-
ers; the program also lets you specify “network file systems” that are used by sev-
eral computers and that should have their own database in their root directories,
such that only one computer needs to construct the database.

B An important configuration setting is the identity of the user that runs up-

datedb. There are essentially two possibilities:

• updatedb runs as root and can thus enter every file in its database. This
also means that users can ferret out file names in directories that they
would not otherwise be able to look into, for example, other users’
home directories.

• updatedb runs with restricted privileges, such as those of user nobody. In
this case, only names within directories readable by nobody end up in
the database.

B The slocate program—an alternative to the usual locate—circumvents this
problem by storing a file’s owner, group and permissions in the database in
addition to the file’s name. It outputs a file name only if the user who runs
slocate can, in fact, access the file in question. slocate comes with an updatedb

program, too, but this is merely another name for slocate itself.

B In many cases, slocate is installed such that it can also be invoked using the
locate command.

Exercises

C 6.25 [!1] README is a very popular file name. Give the absolute path names of
all files on your system called README.

C 6.26 [2] Create a new file in your home directory and convince yourself by
calling locate that this file is not listed (use an appropriately outlandish file
name to make sure). Call updatedb (possibly with administrator privileges).
Does locate find your file afterwards? Delete the file and repeat these steps.

C 6.27 [1] Convince yourself that the slocate program works, by searching for
files like /etc/shadow as normal user.

Copyright © 2012 Linup Front GmbH

6.4 Handling Files 93

Commands in this Chapter

cd Changes a shell’s current working directory bash(1) 75
convmv Converts file names between character encodings convmv(1) 72
cp Copies files cp(1) 82
find Searches files matching certain given criteria find(1), Info: find 87
less Displays texts (such as manual pages) by page less(1) 87
ln Creates (“hard” or symbolic) links ln(1) 84
locate Finds files by name in a file name database locate(1) 91
ls Lists file information or directory contents ls(1) 75
mkdir Creates new directories mkdir(1) 77
more Displays text data by page more(1) 87
mv Moves files to different directories or renames them mv(1) 83
pwd Displays the name of the current working directory pwd(1), bash(1) 75
rm Removes files or directories rm(1) 83
rmdir Removes (empty) directories rmdir(1) 78
slocate Searches file by name in a file name database, taking file permissions into

account slocate(1) 92
updatedb Creates the file name database for locate updatedb(1) 91
xargs Constructs command lines from its standard input

xargs(1), Info: find 90

Summary

• Nearly all possible characters may occur in file names. For portability’s sake,
however, you should restrict yourself to letters, digits, and some special
characters.

• Linux distinguishes between uppercase and lowercase letters in file names.
• Absolute path names always start with a slash and mention all directories

from the root of the directory tree to the directory or file in question. Rela-
tive path names start from the “current directory”.

• You can change the current directory of the shell using the cd command.
You can display its name using pwd.

• ls displays information about files and directories.
• You can create or remove directories using mkdir and rmdir.
• The cp, mv and rm commands copy, move, and delete files and directories.
• The ln command allows you to create “hard” and “symbolic” links.
• more and less display files (and command output) by pages on the terminal.
• find searches for files or directories matching certain criteria.

Copyright © 2012 Linup Front GmbH

7
Regular Expressions

Contents

7.1 Regular Expressions: The Basics 96
7.1.1 Regular Expressions: Extras 96

7.2 Searching Files for Text—grep 97

Goals

• Understanding and being able to formulate simple and extended regular
expressions

• Knowing the grep program and its variants, fgrep and egrep

Prerequisites

• Basic knowledge of Linux, the shell, and Linux commands (e. g., from the
preceding chapters)

• Handling of files and directories (Chapter 6)
• Use of a text editor (Chapter 3)

grd1-regex.tex ()

96 7 Regular Expressions

7.1 Regular Expressions: The Basics

Many Linux commands are used for text processing—patterns of the form “do 𝑥𝑦𝑧
for all lines that look like this” appear over and over again. A very powerful tool to
describe bits of text, most commonly lines of files, is called “regular expressions”1.
At first glance, regular expressions resemble the shell’s file name search patterns
(Section 6.3), but they work differently and offer more possibilities.

Regular expressions are often constructed “recursively” from primitives that
are themselves considered regular expressions. The simplest regular expressions
are letters, digits and many other characters from the usual character set, whichcharacters

stand for themselves. “a”, for example, is a regular expression matching the “a”
character; the regular expression “abc” matches the string “abc”. Character classesCharacter classes

can be defined in a manner similar to shell search patterns; therefore, the regular
expression “[a-e]” matches exactly one character out of “a” to “e”, and “a[xy]b”
matches either “axb” or “ayb”. As in the shell, ranges can be concatenated—
”[A-Za-z]” matches all uppercase and lowercase letters—but the complement ofcomplement

a range is constructed slightly differently: “[^abc]” matches all characters except
“a”, “b”, and “c”. (In the shell, that was “[!abc]”.) The dot, “.”, corresponds to
the question mark in shell search patterns, in that it will match a single arbitrary
character—the only exception is the newline character, “\n”. Thus, “a.c” matches
“abc”, “a/c” and so on, but not the multi-line construction

a

c

This is due to the fact that most programs operate on a per-line basis, and multi-
line constructions would be more difficult to process. (Which is not to say that it
wouldn’t sometimes be nice to be able to do it.)

While shell search patterns must always match beginning at the start of a file
name, in programs selecting lines based on regular expressions it usually suffices
if the regular expression matches anywhere in a line. You can restrict this, how-
ever: A regular expression starting with a caret (“^”) matches only at the begin-Line start

ning of a line, and a regular expression finishing with a dollar sign (“$”) matches
only at the end. The newline character at the end of each line is ignored, so youLine end

can use “xyz$” to select all lines ending in “xyz”, instead of having to write “xyz\n$”.

B Strictly speaking, “^” and “$” match conceptual “invisible” characters at the
beginning of a line and immediately to the left of the newline character at
the end of a line, respectively.

Finally, you can use the asterisk (“*”) to denote that the preceding regular ex-
pression may be repeated arbitrarily many times (including not at all). The aster-Repetition

isk itself does not stand for any characters in the input, but only modifies the pre-
ceding expression—consequently, the shell search pattern “a*.txt” corresponds to
the regular expression “^a.*\\.txt” (remember the “anchoring” of the expression
to the beginning and end of the input line and that an unescaped dot matches any
character). Repetition has precedence over concatenation; “ab*” is a single “a” fol-precedence

lowed by arbitrarily many “b” (including none at all), not an arbitrary number of
repetitions of “ab”.

7.1.1 Regular Expressions: Extras

The previous section’s explanations apply to nearly all Linux programs that deal
with regular expressions. Various programs support different extensions provid-extensions

1This is originally a term from computer science and describes a method of characterization of
sets of strings that result from the concatenation of “letters”, choices from a set of letters, and their
potentially unbounded repetition. Routines to recognize regular expressions are elementary building
blocks of many programs such as programming language compilers. Regular expressions appeared
very early in the history of Unix; most of the early Unix developers had a computer science background,
so the idea was well-known to them.

Copyright © 2012 Linup Front GmbH

7.2 Searching Files for Text—grep 97

ing either notational convenience or additional functionality. The most advanced
implementations today are found in modern scripting languages like Tcl, Perl or
Python, whose implementations by now far exceed the power of regular expres-
sions in their original computer science sense.

Some common extensions are:

Word brackets The “\<” matches the beginning of a word (a place where a non-
letter precedes a letter). Analogously, “\>” matches the end of a word (where
a letter is followed by a non-letter).

Grouping Parentheses (“(…)”) allow for the repetition of concatenations of reg-
ular expressions: “a(bc)*” matches a “a” followed by arbitrarily many repe-
titions of “bc”.

Alternative With the vertical bar (“|”) you can select between several regular ex-
pressions. The expression “motor (bike|cycle|boat)” matches “motor bike”,
“motor cycle”, and “motor boat” but nothing else.

Optional Expression The question mark (“?”) makes the preceding regular ex-
pression optional, i. e., it must occur either once or not at all. “ferry(man)?”
matches either “ferry” or “ferryman”.

At-Least-Once Repetition The plus sign (“+”) corresponds to the repetition op-
erator “*”, except that the preceding regular expression must occur at least
once.

Given Number of Repetitions You can specify a minimum and maximum num-
ber of repetitions in braces: “ab{2,4}” matches “abb”, “abbb”, and “abbbb”, but
not “ab” or “abbbbb”. You may omit the minimum as well as the maximum
number; if there is no minimum number, 0 is assumed, if there is no maxi-
mum number, “infinity” is assumed.

Back-Reference With an expression like “\\𝑛” you may call for a repetition of
that part of the input that matched the parenthetical expression no. 𝑛 in the
regular expression. “(ab)\\1”, for example, matches “abab”, and if, when
processing “(ab*a)x\1”, the parentheses matched abba, then the whole ex-
pression matches abbaxabba (and nothing else). More detail is available in
the documentation of GNU grep.

Non-Greedy Matching The “*”, “+”, and “?” operators are usually “greedy”, i. e.,
they try to match as much of the input as possible: “^a.*a” applied to the in-
put string “abacada” matches “abacada”, not “aba” or “abaca”. However, there
are corresponding “non-greedy” versions “*?”, “+?”, and “??” which try
to match as little of the input as possible. In our example, “^a.*?a” would
match “aba”. The braces operator may also offer a non-greedy version.

Not every program supports every extension. Table 7.1 shows an overview of
the most important programs. Emacs, Perl and Tcl in particular support lots of
extensions that have not been discussed here.

7.2 Searching Files for Text—grep

Possibly one of the most important Linux programs using regular expressions is
grep. It searches one or more files for lines matching a given regular expression.
Matching lines are output, non-matching lines are discarded.

There are two varieties of grep: Traditionally, the stripped-down fgrep (“fixed”) Varieties

does not allow regular expressions—it is restricted to character strings—but is
very fast. egrep (“extended”) offers additional regular expression operators, but is
a bit slower and needs more memory.

Copyright © 2012 Linup Front GmbH

98 7 Regular Expressions

Table 7.1: Regular expression support

Extension GNU grep GNU egrep trad egrep vim emacs Perl Tcl
Word brackets • • • •1 •1 •4 •4
Grouping •1 • • •1 •1 • •
Alternative •1 • • •2 •1 • •
Option •1 • • •3 • • •
At-least-once •1 • • •1 • • •
Limits •1 • ∘ •1 •1 • •
Back-Reference ∘ • • ∘ • • •
Non-Greedy ∘ ∘ ∘ •4 • • •

•: supported; ∘: not supported
Notes: 1. Requires a preceding backslash (“\”), e. g. “ab\+” instead of “ab+”. 2. Needs no parenthe-
ses; alternatives always refer to the complete expression. 3. Uses “\=” instead of “?”. 4. Completely
different syntax (see documentation).

Table 7.2: Options for grep (selected)

Option Result
-c (count) Outputs just the number of matching lines
-i (ignore) Uppercase and lowercase letters are equivalent
-l (list) Outputs just the names of matching files, no actual matches
-n (number) Includes line numbers of matching lines in the output
-r (recursive) Searches files in subdirectories as well
-v (invert) Outputs only lines that do not match the regular expression

B These observations used to be true to some extent. In particular, grep and
egrep used completely different algorithms for regular expression evalua-
tion, which could lead to wildly diverging performance results depending
on the size and structure of the regular expressions as well as the size of the
input. With the common Linux implementation of grep, all three variants
are, in fact, the same program; they differ mostly in the allowable syntax for
their search patterns.

grep’s syntax requires at least a regular expression to search for. This is followedsyntax

by the name of a text file (or files) to be searched. If no file name is specified, grep
refers to standard input (see Chapter 8).

The regular expression to search in the input may contain, besides the basicregular expression

regular expressions from Section 7.1, most of the extensions from Section 7.1.1.
With grep, however, the operators “\+”, “\?”, and “\{” must be preceded by a back-
slash. (For egrep, this is not necessary.) There are unfortunately no “non-greedy”
operators.

B You should put the regular expression in single quotes to prevent the shell
from trying to expand it, especially if it is more complicated than a simple
character string, and definitely if it resembles a shell search pattern.

In addition to the regular expression and file names, various options can be passed
on the command line (see Table 7.2).

With the -f (“file”) option, the search pattern can be read from a file. If thatSearch pattern in file

file contains several lines, the content of every line will be considered a search
pattern in its own right, to be searched simultaneously. This can simplify things
considerably especially for frequently used search patterns.

As mentioned above, fgrep does not allow regular expressions as search pat-
terns. egrep, on the other hand, makes most extensions for regular expressions
more conveniently available (Table 7.1).

Copyright © 2012 Linup Front GmbH

7.2 Searching Files for Text—grep 99

Finally some examples for grep. The frog.txt file contains the Brothers Grimm
fairytale of the Frog King (see appendix B). All lines containing the character se-
quence frog can be easily found as follows:

$ grep frog frog.txt

frog stretching forth its big, ugly head from the water. »Ah, old

»Be quiet, and do not weep,« answered the frog, »I can help you, but

»Whatever you will have, dear frog,« said she, »My clothes, my pearls

�����

To find all lines containing exactly the word “frog” (and not combinations like
“bullfrog” or “frogspawn”), you need the word bracket extension:

$ grep \<frog\> frog.txt

frog stretching forth its big, ugly head from the water. »Ah, old

�����

(it turns out that this does not in fact make a difference in the English translation).
It is as simple to find all lines beginning with “frog”:

$ grep ^frog frog.txt

frog stretching forth its big, ugly head from the water. »Ah, old

frog, that he had caused three iron bands to be laid round his heart,

A different example: The file /usr/share/dict/words contains a list of English
words (frequently called the “dictionary”)2. We’re interested in all words con-
taining three or more “a”:

$ grep -n 'a.*a.*a' /usr/share/dict/words

8:aardvark

21:abaca

22:abacate

����� … 7030 more words …
234831:zygomaticoauricularis

234832:zygomaticofacial

234834:zygomaticomaxillary

(in order: an African animal (Orycteropus afer), a banana plant used for fibre (Musa
textilis), the Brazilian name for the avocado (Persea sp.), a facial muscle and two
adjectives from the same—medical—area of interest.)

B With more complicated regular expressions, it can quickly become unclear
why grep outputs one line but not another. This can be mitigated to a certain
extent by using the --color option, which displays the matching part(s) in a
file in a particular colour:

$ grep --color root /etc/passwd

root:x:0:0:root:/root:/bin/bash

A command like export GREP_OPTIONS='--color=auto' (for example, in ~/.profile)
enables this option on a permanent basis; the auto argument suppresses
colour output if the output is sent to a pipe or file.

Exercises

C 7.1 [2] Are the ? and + regular expressions operators really necessary?
2The size of the dictionary may vary wildly depending on the distribution.

Copyright © 2012 Linup Front GmbH

100 7 Regular Expressions

C 7.2 [!1] In frog.txt, find all lines containing the words “king” or “king’s
daughter”.

C 7.3 [!2] In /etc/passwd there is a list of users on the system (most of the time,
anyway). Every line of the file consists of a sequence of fields separated by
colons. The last field in each line gives the login shell for that user. Give a
grep command line to find all users that use bash as their login shell.

C 7.4 [3] Search /usr/share/dict/words for all words containing exactly the five
vowels “a”, “e”, “i”, “o”, and “u”, in that order (possibly with consonants in
front, in between, and at the end).

C 7.5 [4] Give a command to locate and output all lines from the “Frog King”
in which a word of at least four letters occurs twice.

Commands in this Chapter

egrep Searches files for lines matching specific regular expressions; extended
regular expressions are allowed grep(1) 97

fgrep Searches files for lines with specific content; no regular expressions al-
lowed fgrep(1) 97

grep Searches files for lines matching a given regular expression grep(1) 97

Summary

• Regular expressions are a powerful method for describing sets of character
strings.

• grep and its relations search a file’s content for lines matching regular ex-
pressions.

Copyright © 2012 Linup Front GmbH

8
Standard I/O and Filter
Commands

Contents

8.1 I/O Redirection and Command Pipelines 102
8.1.1 Standard Channels 102
8.1.2 Redirecting Standard Channels 103
8.1.3 Command Pipelines 106

8.2 Filter Commands . 107
8.3 Reading and Writing Files 108

8.3.1 Outputting and Concatenating Text Files—cat 108
8.3.2 Beginning and End—head and tail 108

8.4 Data Management 109
8.4.1 Sorted Files—sort and uniq 109
8.4.2 Columns and Fields—cut, paste etc. 114

Goals

• Mastering shell I/O redirection
• Knowing the most important filter commands

Prerequisites

• Shell operation
• Use of a text editor (see Chapter 3)
• File and directory handling (see Chapter 6)

grd1-filter-opt.tex[!textproc,!heredocs,!join,!od,!tac] ()

102 8 Standard I/O and Filter Commands

Keyboard Process Screen

Keyboard Process Screen

File

stdin stdout

stdin stdout

Figure 8.1: Standard channels on Linux

8.1 I/O Redirection and Command Pipelines

8.1.1 Standard Channels

Many Linux commands—like grep and friends from Chapter 7—are designed to
read input data, manipulate it in some way, and output the result of these manip-
ulations. For example, if you enter

$ grep xyz

you can type lines of text on the keyboard, and grep will only let those pass that
contain the character sequence, “xyz”:

$ grep xyz

abc def

xyz 123

xyz 123

aaa bbb

YYYxyzZZZ

YYYxyzZZZ

Ctrl + d

(The key combination at the end lets grep know that the input is at an end.)
We say that grep reads data from “standard input”—in this case, the keyboard—standard input

and writes to “standard output”—in this case, the console screen or, more likely,standard output
a terminal program in a graphical desktop environment. The third of these
“standard channels” is “standard error output”; while the “payload data” grepstandard error output

produces are written to standard output, standard error output takes any error
messages (e. g., about a non-existent input file or a syntax error in the regular
expression).

In this chapter you will learn how to redirect a program’s standard output to
a file or take a program’s standard input from a file. Even more importantly, you
will learn how to feed one program’s output directly (without the detour via a
file) into another program as that program’s input. This opens the door to using
the Linux commands, which taken on their own are all fairly simple, as building
blocks to construct very complex applications. (Think of a Lego set.)

B We will not be able to exhaust this topic in this chapter. Do look forward
to the manual, Advanced Linux, where constructing shell scripts with the
commands from the Unix “toolchest” plays a very important rôle! Here is
where you learn the very important fundamentals of cleverly combining
Linux commands even on the command line.

Copyright © 2012 Linup Front GmbH

8.1 I/O Redirection and Command Pipelines 103

Table 8.1: Standard channels on Linux

Channel Name Abbreviation Device Use
0 standard input stdin keyboard Input for programs
1 standard output stdout screen Output of programs
2 standard error output stderr screen Programs’ error messages

The standard channels are summarised once more in Table 8.1. In the pa- standard channels

tois, they are normally referred to using their abbreviated names—stdin, stdout

and stderr for standard input, standard output, and standard error output. These
channels are respectively assigned the numbers 0, 1, and 2, which we are going to
use later on.

The shell can redirect these standard channels for individual commands, with- Redirection

out the programs in question noticing anything. These always use the standard
channels, even though the output might no longer be written to the screen or ter-
minal window but some arbitrary other file. That file could be a different device,
like a printer—but it is also possible to specify a text file which will receive the
output. That file does not even have to exist but will be created if required.

The standard input channel can be redirected in the same way. A program no
longer receives its input from the keyboard, but takes it from the specified file,
which can refer to another device or a file in the proper sense.

B The keyboard and screen of the “terminal” you are working on (no matter
whether this is a Linux text console, a “genuine” terminal on a serial port,
a terminal window in a graphical environment, or a network session using,
say, the secure shell) can be accessed by means of the /dev/tty file—if you
want to read data this means the keyboard, for output the screen (the other
way round would be quite silly). The

$ grep xyz /dev/tty

would be equivalent to our example earlier on in this section. You can find
out more about such “special files” from Chapter 10.)

8.1.2 Redirecting Standard Channels

You can redirect the standard output channel using the shell operator “>” (the Redirecting standard output

“greater-than” sign). In the following example, the output of “ls -laF” is redi-
rected to a file called filelist; the screen output consists merely of

$ ls -laF >filelist

$ __

If the filelist file does not exist it is created. Should a file by that name exist,
however, its content will be overwritten. The shell arranges for this even before
the program in question is invoked—the output file will thus be created even if
the actual command invocation contained typos, or if the program did not indeed
write any output at all (in which case the filelist file will remain empty).

B If you want to avoid overwriting existing files using shell output redirection, Protecting existing files

you can give the bash command “set -o noclobber”. In this case, if output is
redirected to an existing file, an error occurs.

You can look at the filelist file in the usual way, e. g., using less:

$ less inhalt

total 7

Copyright © 2012 Linup Front GmbH

104 8 Standard I/O and Filter Commands

drwxr-xr-x 12 joe users 1024 Aug 26 18:55 ./

drwxr-xr-x 5 root root 1024 Aug 13 12:52 ../

drwxr-xr-x 3 joe users 1024 Aug 20 12:30 photos/

-rw-r--r-- 1 joe users 0 Sep 6 13:50 filelist

-rw-r--r-- 1 joe users 15811 Aug 13 12:33 pingu.gif

-rw-r--r-- 1 joe users 14373 Aug 13 12:33 hobby.txt

-rw-r--r-- 2 joe users 3316 Aug 20 15:14 chemistry.txt

If you look closely at the content of filelist, you can see a directory entry for
filelist with size 0. This is due to the shell’s way of doing things: When parsing
the command line, it notices the output redirection first and creates a new filelist

file (or removes its content). After that, the shell executes the command, in this
case ls, while connecting ls’s standard output to the filelist file instead of the
terminal.

B The file’s length in the ls output is 0 because the ls command looked at the
file information for filelist before anything was written to that file – even
though there are three other entries above that of filelist. This is because
ls first reads all directory entries, then sorts them by file name, and only
then starts writing to the file. Thus ls sees the newly created (or emptied)
file filelist, with no content so far.

If you want to append a command’s output to an existing file without replacingAppending stan-
dard output to a file its previous content, use the >> operator. If that file does not exist, it will be created

in this case, too.

$ date >> filelist

$ less filelist

total 7

drwxr-xr-x 12 joe users 1024 Aug 26 18:55 ./

drwxr-xr-x 5 root root 1024 Aug 13 12:52 ../

drwxr-xr-x 3 joe users 1024 Aug 20 12:30 photos/

-rw-r--r-- 1 joe users 0 Sep 6 13:50 filelist

-rw-r--r-- 1 joe users 15811 Aug 13 12:33 pingu.gif

-rw-r--r-- 1 joe users 14373 Aug 13 12:33 hobby.txt

-rw-r--r-- 2 joe users 3316 Aug 20 15:14 chemistry.txt

Wed Oct 22 12:31:29 CEST 2003

In this example, the current date and time was appended to the filelist file.
Another way to redirect the standard output of a command is by using “back-

ticks” (`…`). This is also called command substitution: The standard output of acommand substitution

command in backticks will be inserted into the command line instead of the com-
mand (and backticks); whatever results from the replacement will be executed.
For example:

$ cat dates Our little diary
22/12 Get presents

23/12 Get Christmas tree

24/12 Christmas Eve

$ date +%d/%m What’s the date?
23/12

$ grep `̂date +%d/%m.` dates What’s up?
23/12 Get Christmas tree

B A possibly more convenient syntax for “`date`” is “$(date)”. This makes it
easier to nest such calls. However, this syntax is only supported by modern
shells such as bash.

You can use <, the “less-than” sign, to redirect the standard input channel. ThisRedirecting standard input

will read the content of the specified file instead of keyboard input:

Copyright © 2012 Linup Front GmbH

8.1 I/O Redirection and Command Pipelines 105

$ wc -w <frog.txt

1397

In this example, the wc filter command counts the words in file frog.txt.

B There is no << redirection operator to concatenate multiple input files; to
pass the content of several files as a command’s input you need to use cat:

$ cat file1 file2 file3 | wc -w

(We shall find out more about the “|” operator in the next section.) Most
programs, however, do accept one or more file names as command line ar-
guments.

Of course, standard input and standard output may be redirected at the same Simultaneous redirection

time. The output of the word-count example is written to a file called wordcount

here:

$ wc -w <frog.txt >wordcount

$ cat wordcount

1397

Besides the standard input and standard output channels, there is also the stan- standard error output

dard error output channel. If errors occur during a program’s operation, the cor-
responding messages will be written to that channel. That way you will see them
even if standard output has been redirected to a file. If you want to redirect stan-
dard error output to a file as well, you must state the channel number for the
redirection operator—this is optional for stdin (0<) and stdout (1>) but mandatory
for stderr (2>).

You can use the >& operator to redirect a channel to a different one:

make >make.log 2>&1

redirects standard output and standard error output of the make command to make.

log.

B Watch out: Order is important here! The two commands

make >make.log 2>&1

make 2>&1 >make.log

lead to completely different results. In the second case, standard error out-
put will be redirected to wherever standard output goes (/dev/tty, where
standard error output would go anyway), and then standard output will be
sent to make.log, which, however, does not change the target for standard
error output.

Exercises

C 8.1 [2] You can use the -U option to get ls to output a directory’s entries with-
out sorting them. Even so, after “ls -laU >filelist”, the entry for filelist in
the output file gives length zero. What could be the reason?

C 8.2 [!2] Compare the output of the commands “ls /tmp” and “ls /tmp >ls-

tmp.txt” (where, in the second case, we consider the content of the ls-tmp.txt

to be the output). Do you notice something? If so, how could you explain
the phenomenon?

Copyright © 2012 Linup Front GmbH

106 8 Standard I/O and Filter Commands

Command tee Command

File

stdin stdout

Figure 8.2: The tee command

C 8.3 [!2] Why isn’t it possible to replace a file by a new version in one step,
for example using “grep xyz file >file”?

C 8.4 [!1] And what is wrong with “cat foo >>foo”, assuming a non-empty file
foo?

C 8.5 [2] In the shell, how would you output an error message such that it goes
to standard error output?

8.1.3 Command Pipelines

Output redirection is frequently used to store the result of a program in order to
continue processing it with a different command. However, this type of interme-
diate storage is not only quite tedious, but you must also remember to get rid of
the intermediate files once they are no longer required. Therefore, Linux offers a
way of linking commands directly via pipes: A program’s output automaticallypipes

becomes another program’s input.
This direct connection of several commands into a pipeline is done using thedirect connection of

several commands

pipeline
| operator. Instead of first redirecting the output of “ls -laF” to a file and then
looking at that file using less, you can do the same thing in one step without an
intermediate file:

$ ls -laF | less

total 7

drwxr-xr-x 12 joe users 1024 Aug 26 18:55 ./

drwxr-xr-x 5 root root 1024 Aug 13 12:52 ../

drwxr-xr-x 3 joe users 1024 Aug 20 12:30 photos/

-rw-r--r-- 1 joe users 449 Sep 6 13:50 filelist

-rw-r--r-- 1 joe users 15811 Aug 13 12:33 pingu.gif

-rw-r--r-- 1 joe users 14373 Aug 13 12:33 hobby.txt

-rw-r--r-- 2 joe users 3316 Aug 20 15:14 chemistry.txt

These command pipelines can be almost any length. Besides, the final result can
be redirected to a file:

$ cut -d: -f1 /etc/passwd | sort | pr -2 >userlst

This command pipeline takes all user names from the first comma-separated col-
umn of /etc/passwd file, sorts them alphabetically and writes them to the userlst

file in two columns. The commands used here will be described in the remainder
of this chapter.

Sometimes it is helpful to store the data stream inside a command pipeline at
a certain point, for example because the intermediate result at that stage is usefulintermediate result

for different tasks. The tee command copies the data stream and sends one copy
to standard output and another copy to a file. The command name should be
obvious if you know anything about plumbing (see Figure 8.2).

The tee command with no options creates the specified file or overwrites it if it
exists; with -a (“append”), the output can be appended to an existing file.

Copyright © 2012 Linup Front GmbH

8.2 Filter Commands 107

$ ls -laF | tee list | less

total 7

drwxr-xr-x 12 joe users 1024 Aug 26 18:55 ./

drwxr-xr-x 5 root root 1024 Aug 13 12:52 ../

drwxr-xr-x 3 joe users 1024 Aug 20 12:30 photos/

-rw-r--r-- 1 joe users 449 Sep 6 13:50 content

-rw-r--r-- 1 joe users 15811 Aug 13 12:33 pingu.gif

-rw-r--r-- 1 joe users 14373 Aug 13 12:33 hobby.txt

-rw-r--r-- 2 joe users 3316 Aug 20 15:14 chemistry.txt

In this example the content of the current directory is written both to the list file
and the screen. (The list file does not show up in the ls output because it is only
created afterwards by tee.)

Exercises

C 8.6 [!2] How would you write the same intermediate result to several files
at the same time?

8.2 Filter Commands

One of the basic ideas of Unix—and, consequently, Linux—is the “toolkit princi- toolkit principle

ple”. The system comes with a great number of system programs, each of which
performs a (conceptually) simple task. These programs can be used as “building
blocks” to construct other programs, to save the authors of those programs from
having to develop the requisite functions themselves. For example, not every pro-
gram contains its own sorting routines, but many programs avail themselves of
the sort command provided by Linux. This modular structure has several advan-
tages:

• It makes life easier for programmers, who do not need to develop (or incor-
porate) new sorting routines all the time.

• If sort receives a bug fix or performance improvement, all programs using
sort benefit from it, too—and in most cases do not even need to be changed.

Tools that take their input from standard input and write their output to standard
output are called “filter commands” or “filters” for short. Without input redirec-
tion, a filter will read its input from the keyboard. To finish off keyboard input for
such a program, you must enter the key sequence Ctrl + d , which is interpreted
as “end of file” by the terminal driver.

B Note that the last applies to keyboard input only. Files on the disk may of
course contain the Ctrl + d character (ASCII 4), without the system believ-
ing that the file ended at that point. This as opposed to a certain very popu-
lar operating system, which traditionally has a somewhat quaint notion of
the meaning of the Control-Z (ASCII 26) character even in text files …

Many “normal” commands, such as the aforementioned grep, operate like fil-
ters if you do not specify input file names for them to work on.

In the remainder of the chapter you will become familiar with a selection of the
most important such commands. Some commands have crept in that are not tech-
nically genuine filter commands, but all of them form important building blocks
for pipelines.

Copyright © 2012 Linup Front GmbH

108 8 Standard I/O and Filter Commands

Table 8.2: Options for cat (selection)

Option Result
-b (engl. number non-blank lines) Numbers all non-blank lines in

the output, starting at 1.
-E (engl. end-of-line) Displays a $ at the end of each line (useful

to detect otherwise invisible space characters).
-n (engl. number) Numbers all lines in the output, starting at 1.
-s (engl. squeeze) Replaces sequences of empty lines by a single

empty line.
-T (engl. tabs) Displays tab characters as “^I”.
-v (engl. visible) Makes control characters 𝑐 visible as “^𝑐”, char-

acters 𝛼 with character codes greater than 127 as “M-𝛼”.
-A (engl. show all) Same as -vET.

8.3 Reading and Writing Files

8.3.1 Outputting and Concatenating Text Files—cat

The cat (“concatenate”) command is really intended to join several files named onconcatenating files

the command line into one. If you pass just a single file name, the content of that
file will be written to standard output. If you do not pass a file name at all, cat
reads its standard input—this may seem useless, but cat offers options to number
lines, make line ends and special characters visible or compress runs of blank lines
into one (Table 8.2).

B It goes without saying that only text files lead to sensible screen output withtext files

cat. If you apply the command to other types of files (such as the binary file
/bin/cat), it is more than probable—on a text terminal at least—that the shell
prompt will consist of unreadable characters once the output is done. In this
case you can restore the normal character set by (blindly) typing reset. If you
redirect cat output to a file this is of course not a problem.

B The “Useless Use of cat Award” goes to people using cat where it is extra-
neous. In most cases, commands do accept filenames and don’t just read
their standard input, so cat is not required to pass a single file to them on
standard input. A command like “cat data.txt | grep foo” is unnecessary if
you can just as well write “grep foo data.txt”. Even if grep could only read
its standard input, “grep foo <data.txt” would be shorter and would not in-
volve an additional cat process.

Exercises

C 8.7 [2] How can you check whether a directory contains files with “weird”
names (e. g., ones with spaces at the end or invisible control characters in
the middle)?

8.3.2 Beginning and End—head and tail

Sometimes you are only interested in part of a file: The first few lines to check
whether it is the right file, or, in particular with log files, the last few entries. The
head and tail commands deliver exactly that—by default, the first ten and the last
ten lines of every file passed as an argument, respectively (or else as usual the first
or last ten lines of their standard input). The -n option lets you specify a different
number of lines: “head -n 20” returns the first 20 lines of its standard input, “tail
-n 5 data.txt” the last 5 lines of file data.txt.

Copyright © 2012 Linup Front GmbH

8.4 Data Management 109

B Tradition dictates that you can specify the number 𝑛 of desired lines directly
as “-𝑛”. Officially this is no longer allowed, but the Linux versions of head

and tail still support it.

You can use the -c option to specify that the count should be in bytes, not lines:
“head -c 20” displays the first 20 bytes of standard input, no matter how many
lines they occupy. If you append a “b”, “k”, or “m” (for “blocks”, “kibibytes”, and
“mebibytes”, respectively) to the count, the count will be multiplied by 512, 1024,
or 1048576, respectively.

B head also lets you use a minus sign: “head -c -20” displays all of its standard
input but the last 20 bytes.

B By way of revenge, tail can do something that head does not support: If the
number of lines starts with “+”, it displays everything starting with the given
line:

$ tail -n +3 file Everything from line 3

The tail command also supports the important -f option. This makes tail wait
after outputting the current end of file, to also output data that is appended later
on. This is very useful if you want to keep an eye on some log files. If you pass
several file names to tail -f, it puts a header line in front of each block of output
lines telling what file the new data was written to.

Exercises

C 8.8 [!2] How would you output just the 13th line of the standard input?

C 8.9 [3] Check out “tail -f”: Create a file and invoke “tail -f” on it. Then,
from another window or virtual console, append something to the file us-
ing, e. g., “echo >>…”, and observe the output of tail. What does it look like
when tail is watching several files simultaneously?

C 8.10 [3] What happens to “tail -f” if the file being observed shrinks?

C 8.11 [3] Explain the output of the following commands:

$ echo Hello >/tmp/hello

$ echo "Hiya World" >/tmp/hello

when you have started the command

$ tail -f /tmp/hello

in a different window after the first echo above.

8.4 Data Management

8.4.1 Sorted Files—sort and uniq

The sort command lets you sort the lines of text files according to predetermined
criteria. The default setting is ascending (from A to Z) according to the ASCII default setting

values1 of the first few characters of each line. This is why special characters such
as German umlauts are frequently sorted incorrectly. For example, the character
code of “Ä” is 143, so that character ends up far beyond “Z” with its character code
of 91. Even the lowercase latter “a” is considered “greater than” the uppercase
letter “Z”.

1Of course ASCII only goes up to 127. What is really meant here is ASCII together with whatever
extension for the characters with codes from 128 up is currently used, for example ISO-8859-1, also
known as ISO-Latin-1.

Copyright © 2012 Linup Front GmbH

110 8 Standard I/O and Filter Commands

B Of course, sort can adjust itself to different languages and cultures. To sort
according to German conventions, set one of the environment variables LANG,
LC_ALL, or LC_COLLATE to a value such as “de”, “de_DE”, or “de_DE@UTF-8” (the
actual value depends on your distribution). If you want to set this up for
a single sort invocation only, do

$ … | LC_COLLATE=de_DE.UTF-8 sort

The value of LC_ALL has precedence over the value of LC_COLLATE and that,
again, has precedence over the value of LANG. As a side effect, German sort
order causes the case of letters to be ignored when sorting.

Unless you specify otherwise, the sort proceeds “lexicographically” considering
all of the input line. That is, if the initial characters of two lines compare equal,
the first differing character within the line governs their relative positioning. Of
course sort can sort not just according to the whole line, but more specifically ac-
cording to the values of certain “columns” or fields of a (conceptual) table. FieldsSorting by fields

are numbered starting at 1; with the “-k 2” option, the first field would be ignored
and the second field of each line considered for sorting. If the values of two lines
are equal in the second field, the rest of the line will be looked at, unless you spec-
ify the last field to be considered using something like “-k 2,3”. Incidentally, it is
permissible to specify several -k options with the same sort command.

B In addition, sort supports an obsolete form of position specification: Here
fields are numbered starting at 0, the initial field is specified as “+𝑚” and
the final field as “-𝑛”. To complete the differences to the modern form, the
final field is specified “exclusively”—you give the first field that should not
be taken into account for sorting. The examples above would, respectively,
be “+1”, “+1 -3”, and “+1 -2”.

The space character serves as the separator between fields. If several spaces occurseparator

in sequence, only the first is considered a separator; the others are considered
part of the value of the following field. Here is a little example, namely the list
of participants for the annual marathon run of the Lameborough Track & Field
Club. To start, we ensure that we use the system’s standard language environment
(“POSIX”) by resetting the corresponding environment variables. (Incidentally, the
fourth column gives a runner’s bib number.)

$ unset LANG LC_ALL LC_COLLATE

$ cat participants.dat

Smith Herbert Pantington AC 123 Men

Prowler Desmond Lameborough TFC 13 Men

Fleetman Fred Rundale Sportsters 217 Men

Jumpabout Mike Fairing Track Society 154 Men

de Leaping Gwen Fairing Track Society 26 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

Sweat Susan Rundale Sportsters 93 Ladies

Runnington Kathleen Lameborough TFC 119 Ladies

Longshanks Loretta Pantington AC 55 Ladies

O'Finnan Jack Fairing Track Society 45 Men

Oblomovsky Katie Rundale Sportsters 57 Ladies

Let’s try a list sorted by last name first. This is easy in principle, since the last
names are at the front of each line:

$ sort participants.dat

Fleetman Fred Rundale Sportsters 217 Men

Jumpabout Mike Fairing Track Society 154 Men

Longshanks Loretta Pantington AC 55 Ladies

Copyright © 2012 Linup Front GmbH

8.4 Data Management 111

O'Finnan Jack Fairing Track Society 45 Men

Oblomovsky Katie Rundale Sportsters 57 Ladies

Prowler Desmond Lameborough TFC 13 Men

Runnington Kathleen Lameborough TFC 119 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

Smith Herbert Pantington AC 123 Men

Sweat Susan Rundale Sportsters 93 Ladies

de Leaping Gwen Fairing Track Society 26 Ladies

You will surely notice the two small problems with this list: “Oblomovsky” should
really be in front of “O’Finnan”, and “de Leaping” should end up at the front of
the list, not the end. These will disappear if we specify “English” sorting rules:

$ LC_COLLATE=en_GB sort participants.dat

de Leaping Gwen Fairing Track Society 26 Ladies

Fleetman Fred Rundale Sportsters 217 Men

Jumpabout Mike Fairing Track Society 154 Men

Longshanks Loretta Pantington AC 55 Ladies

Oblomovsky Katie Rundale Sportsters 57 Ladies

O'Finnan Jack Fairing Track Society 45 Men

Prowler Desmond Lameborough TFC 13 Men

Runnington Kathleen Lameborough TFC 119 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

Smith Herbert Pantington AC 123 Men

Sweat Susan Rundale Sportsters 93 Ladies

(en_GB is short for “British English”; en_US, for “American English”, would also work
here.) Let’s sort according to the first name next:

$ sort -k 2,2 participants.dat

Smith Herbert Pantington AC 123 Men

Sweat Susan Rundale Sportsters 93 Ladies

Prowler Desmond Lameborough TFC 13 Men

Fleetman Fred Rundale Sportsters 217 Men

O'Finnan Jack Fairing Track Society 45 Men

Jumpabout Mike Fairing Track Society 154 Men

Runnington Kathleen Lameborough TFC 119 Ladies

Oblomovsky Katie Rundale Sportsters 57 Ladies

de Leaping Gwen Fairing Track Society 26 Ladies

Longshanks Loretta Pantington AC 55 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

This illustrates the property of sort mentioned above: The first of a sequence of
spaces is considered the separator, the others are made part of the following field’s
value. As you can see, the first names are listed alphabetically but only within the
same length of last name. This can be fixed using the -b option, which treats runs
of space characters like a single space:

$ sort -b -k 2,2 participants.dat

Prowler Desmond Lameborough TFC 13 Men

Fleetman Fred Rundale Sportsters 217 Men

Smith Herbert Pantington AC 123 Men

O'Finnan Jack Fairing Track Society 45 Men

Runnington Kathleen Lameborough TFC 119 Ladies

Oblomovsky Katie Rundale Sportsters 57 Ladies

de Leaping Gwen Fairing Track Society 26 Ladies

Longshanks Loretta Pantington AC 55 Ladies

Jumpabout Mike Fairing Track Society 154 Men

Copyright © 2012 Linup Front GmbH

112 8 Standard I/O and Filter Commands

Table 8.3: Options for sort (selection)

Option Result
-b (blank) Ignores leading blanks in field contents
-d (dictionary) Sorts in “dictionary order”, i. e., only letters, digits and spaces are taken

into account
-f (fold) Makes uppercase and lowercase letters equivalent
-i (ignore) Ignores non-printing characters
-k ⟨field⟩[,⟨field’⟩] (key) Sort according to ⟨field⟩ (up to and including ⟨field’⟩)
-n (numeric) Considers field value as a number and sorts according to its numeric

value; leading blanks will be ignored
-o datei (output) Writes results to a file, whose name may match the original input file
-r (reverse) Sorts in descending order, i. e., Z to A
-t⟨char⟩ (terminate) The ⟨char⟩ character is used as the field separator
-u (unique) Writes only the first of a sequence of equal output lines

Sweat Susan Rundale Sportsters 93 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

This sorted list still has a little blemish; see Exercise 8.14.
The sort field can be specified in even more detail, as the following exampleMore detailed field specification

shows:

$ sort -br -k 2.2 participants.dat

Sweat Susan Rundale Sportsters 93 Ladies

Fleetman Fred Rundale Sportsters 217 Men

Longshanks Loretta Pantington AC 55 Ladies

Runnington Vivian Lameborough TFC 117 Ladies

Jumpabout Mike Fairing Track Society 154 Men

Prowler Desmond Lameborough TFC 13 Men

Smith Herbert Pantington AC 123 Men

de Leaping Gwen Fairing Track Society 26 Ladies

Oblomovsky Katie Rundale Sportsters 57 Ladies

Runnington Kathleen Lameborough TFC 119 Ladies

O'Finnan Jack Fairing Track Society 45 Men

Here, the participants.dat file is sorted in descending order (-r) according to the
second character of the second table field, i. e., the second character of the first
name (very meaningful!). In this case as well it is necessary to ignore leading
spaces using the -b option. (The blemish from Exercise 8.14 still manifests itself
here.)

With the -t (“terminate”) option you can select an arbitrary character in place
of the field separator. This is a good idea in principle, since the fields then mayfield separator

contain spaces. Here is a more usable (if less readable) version of our example
file:

Smith:Herbert:Pantington AC:123:Men

Prowler:Desmond:Lameborough TFC:13:Men

Fleetman:Fred:Rundale Sportsters:217:Men

Jumpabout:Mike:Fairing Track Society:154:Men

de Leaping:Gwen:Fairing Track Society:26:Ladies

Runnington:Vivian:Lameborough TFC:117:Ladies

Sweat:Susan:Rundale Sportsters:93:Ladies

Runnington:Kathleen:Lameborough TFC:119:Ladies

Longshanks:Loretta: Pantington AC:55:Ladies

O'Finnan:Jack:Fairing Track Society:45:Men

Oblomovsky:Katie:Rundale Sportsters:57:Ladies

Copyright © 2012 Linup Front GmbH

8.4 Data Management 113

Sorting by first name now leads to correct results using “LC_COLLATE=en_GB sort -t:

-k2,2”. It is also a lot easier to sort, e. g., by a participant’s number (now field 4, no
matter how many spaces occur in their club’s name:

$ sort -t: -k4 participants0.dat

Runnington:Vivian:Lameborough TFC:117:Ladies

Runnington:Kathleen:Lameborough TFC:119:Ladies

Smith:Herbert:Pantington AC:123:Men

Prowler:Desmond:Lameborough TFC:13:Men

Jumpabout:Mike:Fairing Track Society:154:Men

Fleetman:Fred:Rundale Sportsters:217:Men

de Leaping:Gwen:Fairing Track Society:26:Ladies

O'Finnan:Jack:Fairing Track Society:45:Men

Longshanks:Loretta: Pantington AC:55:Ladies

Oblomovsky:Katie:Rundale Sportsters:57:Ladies

Sweat:Susan:Rundale Sportsters:93:Ladies

Of course the “number” sort is done lexicographically, unless otherwise specified—“117”
and “123” are put before “13”, and that in turn before “154”. This can be fixed by
giving the -n option to force a numeric comparison: numeric comparison

$ sort -t: -k4 -n participants0.dat

Prowler:Desmond:Lameborough TFC:13:Men

de Leaping:Gwen:Fairing Track Society:26:Ladies

O'Finnan:Jack:Fairing Track Society:45:Men

Longshanks:Loretta: Pantington AC:55:Ladies

Oblomovsky:Katie:Rundale Sportsters:57:Ladies

Sweat:Susan:Rundale Sportsters:93:Ladies

Runnington:Vivian:Lameborough TFC:117:Ladies

Runnington:Kathleen:Lameborough TFC:119:Ladies

Smith:Herbert:Pantington AC:123:Men

Jumpabout:Mike:Fairing Track Society:154:Men

Fleetman:Fred:Rundale Sportsters:217:Men

These and some more important options for sort are shown in Table 8.3; studying
the program’s documentation is well worthwhile. sort is a versatile and powerful
command which will save you a lot of work.

The uniq command does the important job of letting through only the first of a uniq command

sequence of equal lines in the input (or the last, just as you prefer). What is con-
sidered “equal” can, as usual, be specified using options. uniq differs from most
of the programs we have seen so far in that it does not accept an arbitrary number
of named input files but just one; a second file name, if it is given, is considered
the name of the desired output file (if not, standard output is assumed). If no file
is named in the uniq call, uniq reads standard input (as it ought).

uniq works best if the input lines are sorted such that all equal lines occur one
after another. If that is not the case, it is not guaranteed that each line occurs only
once in the output:

$ cat uniq-test

Hipp

Hopp

Hopp

Hipp

Hipp

Hopp

$ uniq uniq-test

Hipp

Hopp

Copyright © 2012 Linup Front GmbH

114 8 Standard I/O and Filter Commands

Hipp

Hopp

Compare this to the output of “sort -u”:

$ sort -u uniq-test

Hipp

Hopp

Exercises

C 8.12 [!2] Sort the list of participants in participants0.dat (the file with colon
separators) according to the club’s name and, within clubs, the last and first
names of the runners (in that order).

C 8.13 [3] How can you sort the list of participants by club name in ascending
order and, within clubs, by number in descending order? (Hint: Read the
documentation!)

C 8.14 [!2] What is the “blemish” alluded to in the examples and why does it
occur?

C 8.15 [2] A directory contains files with the following names:

01-2002.txt 01-2003.txt 02-2002.txt 02-2003.txt

03-2002.txt 03-2003.txt 04-2002.txt 04-2003.txt

�����

11-2002.txt 11-2003.txt 12-2002.txt 12-2003.txt

Give a sort command to sort the output of ls into “chronologically correct”
order:

01-2002.txt

02-2002.txt

�����

12-2002.txt

01-2003.txt

�����

12-2003.txt

8.4.2 Columns and Fields—cut, paste etc.

While you can locate and “cut out” lines of a text file using grep, the cut commandCutting columns

works through a text file “by column”. This works in one of two ways:
One possibility is the absolute treatment of columns. These columns corre-Absolute columns

spond to single characters in a line. To cut out such columns, the column number
must be given after the -c option (“column”). To cut several columns in one step,
these can be specified as a comma-separated list. Even column ranges may be
specified.

$ cut -c 12,1-5 participants.dat

SmithH

ProwlD

FleetF

JumpaM

de LeG

�����

Copyright © 2012 Linup Front GmbH

8.4 Data Management 115

In this example, the first letter of the first name and the first five letters of the
last name are extracted. It also illustrates the notable fact that the output always
contains the columns in the same order as in input. Even if the selected column
ranges overlap, every input character is output at most once:

$ cut -c 1-5,2-6,3-7 participants.dat

Smith

Prowler

Fleetma

Jumpabo

de Leap

�����

The second method is to cut relative fields, which are delimited by separator Relative fields

characters. If you want to cut delimited fields, cut needs the -f (“field”) option
and the desired field number. The same rules as for columns apply. The -c and -f

options are mutually exclusive.
The default separator is the tab character; other separators may be specified separators

with the -d option (“delimiter”):

$ cut -d: -f 1,4 participants0.dat

Smith:123

Prowler:13

Fleetman:217

Jumpabout:154

de Leaping:26

�����

In this way, the participants’ last names (column 1) and numbers (column 4) are
taken from the list. For readability, only the first few lines are displayed.

B Incidentally, using the --output-delimiter option you can specify a different
separator character for the output fields than is used for the input fields:

$ cut -d: --output-delimiter=': ' -f 1,4 participants0.dat

Smith: 123

Prowler: 13

Fleetman: 217

Jumpabout: 154

de Leaping: 26

B If you really want to change the order of columns and fields, you have to
bring in the big guns, such as awk or perl; you could do it using the paste

command, which will be introduced presently, but that is rather tedious.

When files are treated by fields (rather than columns), the -s option (“sepa- Suppressing no-field lines

rator”) is helpful. If “cut -f” encounters lines that do not contain the separator
character, these are normally output in their entirety; -s suppresses these lines.

The paste command joins the lines of the specified files. It is thus frequently Joining lines of files

used together with cut. As you will have noticed immediately, paste is not a filter
command. You may however give a minus sign in place of one of the input file-
names for paste to read its standard input at that point. Its output always goes to
standard output.

As we said, paste works by lines. If two file names are specified, the first line Join files “in parallel”

of the first file and the first of the second are joined (using a tab character as the
separator) to form the first line of the output. The same is done with all other lines
in the files. To specify a different separator, use the -d option. separator

By way of an example, we can construct a version of the list of marathon run-
ners with the participants’ numbers in front:

Copyright © 2012 Linup Front GmbH

116 8 Standard I/O and Filter Commands

$ cut -d: -f4 participants0.dat >number.dat

$ cut -d: -f1-3,5 participants0.dat \

> | paste -d: number.dat - >p-number.dat

$ cat p-number.dat

123:Smith:Herbert:Pantington AC:Men

13:Prowler:Desmond:Lameborough TFC:Men

217:Fleetman:Fred:Rundale Sportsters:Men

154:Jumpabout:Mike:Fairing Track Society:Men

26:de Leaping:Gwen:Fairing Track Society:Ladies

117:Runnington:Vivian:Lameborough TFC:Ladies

93:Sweat:Susan:Rundale Sportsters:Ladies

119:Runnington:Kathleen:Lameborough TFC:Ladies

55:Longshanks:Loretta: Pantington AC:Ladies

45:O'Finnan:Jack:Fairing Track Society:Men

57:Oblomovsky:Katie:Rundale Sportsters:Ladies

This file may now conveniently be sorted by number using “sort -n p-number.dat”.
With -s (“serial”), the given files are processed in sequence. First, all the linesJoin files serially

of the first file are joined into one single line (using the separator character), then
all lines from the second file make up the second line of the output etc.

$ cat list1

Wood

Bell

Potter

$ cat list2

Keeper

Chaser

Seeker

$ paste -s list*

Wood Bell Potter

Keeper Chaser Seeker

All files matching the list* wildcard pattern—in this case, list1 and list2—are
joined using paste. The -s option causes every line of these files to make up one
column of the output.

Exercises

C 8.16 [!2] Generate a new version of the participants.dat file (the one with
fixed-width columns) in which the participant numbers and club affiliations
do not occur.

C 8.17 [!2] Generate a new version of the participants0.dat file (the one with
fields separated using colons) in which the participant numbers and club
affiliations do not occur.

C 8.18 [3] Generate a version of participants0.dat in which the fields are not
separated by colons but by the string “,␣” (a comma followed by a space
character).

C 8.19 [3] How many groups are used as primary groups by users on your
system? (The primary group of a user is the fourth field in /etc/passwd.)

Copyright © 2012 Linup Front GmbH

8.4 Data Management 117

Commands in this Chapter

cat Concatenates files (among other things) cat(1) 108
cut Extracts fields or columns from its input cut(1) 114
head Displays the beginning of a file head(1) 108
paste Joins lines from different input files paste(1) 115
reset Resets a terminal’s character set to a “reasonable” value tset(1) 108
sort Sorts its input by line sort(1) 109
tail Displays a file’s end tail(1) 108
uniq Replaces sequences of identical lines in its input by single specimens

uniq(1) 113

Summary

• Every Linux program supports the standard I/O channels stdin, stdout, and
stderr.

• Standard output and standard error output can be redirected using opera-
tors > and >>, standard input using operator <.

• Pipelines can be used to connect the standard output and input of programs
directly (without intermediate files).

• Using the tee command, intermediate results of a pipeline can be stored to
files.

• Filter commands (or “filters”) read their standard input, manipulate it, and
write the results to standard output.

• sort is a versatile program for sorting.
• The cut command cuts specified ranges of columns or fields from every line

of its input.
• With paste, the lines of files can be joined.

Copyright © 2012 Linup Front GmbH

9
More About The Shell

Contents

9.1 Simple Commands: sleep, echo, and date 120
9.2 Shell Variables and The Environment. 121
9.3 Command Types – Reloaded 123
9.4 The Shell As A Convenient Tool 124
9.5 Commands From A File 127
9.6 The Shell As A Programming Language. 128

Goals

• Knowing about shell variables and evironment variables

Prerequisites

• Basic shell knowledge (Chapter 4)
• File management and simple filter commands (Chapter 6, Chapter 8)
• Use of a text editor (Chapter 3)

grd1-shell2-opt.tex[!exec,!jobs,!history] ()

120 9 More About The Shell

9.1 Simple Commands: sleep, echo, and date

To give you some tools for experiments, we shall now explain some very simple
commands:

sleep This command does nothing for the number of seconds specified as the
argument. You can use it if you want your shell to take a little break:

$ sleep 10

Nothing happens for approximately 10 seconds
$ _

echo The command echo outputs its arguments (and nothing else), separated byOutput arguments

spaces. It is still interesting and useful, since the shell replaces variable references
(see Section 9.2) and similar things first:

$ p=Planet

$ echo Hello $p

Hello Planet

$ echo Hello ${p}oid

Hello Planetoid

(The second echo illustrates what to do if you want to append something directly
to the value of a variable.)

B If echo is called with the -n option, it does not write a line terminator at the
end of its output:

$ echo -n Hello

Hello_

date The date command displays the current date and time. You have consider-date and time

able leeway in determining the format of the output—call “date --help”, or read
the online documentation using “man date”.

B (When reading through this manual for the second time:) In particular, date
serves as a world clock, if you first set the TZ environment variable to the
name of a time zone or important city (usually capital):

$ date

Thu Oct 5 14:26:07 CEST 2006

$ export TZ=Asia/Tokyo

$ date

Tue Oct 5 21:26:19 JST 2006

$ unset TZ

You can find out about valid time zone and city names by rooting around
in /usr/share/zoneinfo.

While every user is allowed to read the system time, only the system administra-Set the system time

tor root may change the system time using the date command and an argument of
the form MMDDhhmm, where MM is the calendar month, DD the calendar day, hh the hour,
and mm the minute. You can optionally add two digits the year (plus possibly an-
other two for the century) and the seconds (separated with a dot), which should,
however, prove necessary only in very rare cases.

Copyright © 2012 Linup Front GmbH

9.2 Shell Variables and The Environment 121

$ date

Thu Oct 5 14:28:13 CEST 2006

$ date 08181715

date: cannot set date: Operation not permitted

Fri Aug 18 17:15:00 CEST 2006

B The date command only changes the internal time of the Linux system. This
time will not necessarily be transferred to the CMOS clock on the computer’s
mainboard, so a special command may be required to do so. Many distri-
butions will do this automatically when the system is shut down.

Exercises

C 9.1 [!3] Assume now is 22 October 2003, 12:34 hours and 56 seconds. Study
the date documentation and state formatting instructions to achieve the fol-
lowing output:

1. 22-10-2003

2. 03-294 (WK43) (Two-digit year, number of day within year, calendar
week)

3. 12h34m56s

C 9.2 [!2] What time is it now in Los Angeles?

9.2 Shell Variables and The Environment

Like most common shells, bash has features otherwise found in programming lan-
guages. For example, it is possible to store pieces of text or numbers in variables
and retrieve them later. Variables also control various aspects of the operation of
the shell itself.

Within the shell, a variable is set by means of a command like “foo=bar” (this Setting variables

command sets the foo variable to the textual value bar). Take care not to insert
spaces in front of or behind the equals sign! You can retrieve the value of the
variable by using the variable name with a dollar sign in front:

$ foo=bar

$ echo foo

foo

$ echo $foo

bar

(note the difference).
We distinguish environment variables from shell variables. Shell variables environment variables

shell variablesare only visible in the shell in which they have been defined. On the other hand,
environment variables are passed to the child process when an external command
is started and can be used there. (The child process does not have to be a shell;
every Linux process has environment variables). All the environment variables
of a shell are also shell variables but not vice versa.

Using the export command, you can declare an existing shell variable an envi- export

ronment variable:

$ foo=bar foo is now a shell variable
$ export foo foo is now an environment variable

Or you define a new variable as a shell and environment variable at the same time:

Copyright © 2012 Linup Front GmbH

122 9 More About The Shell

Table 9.1: Important Shell Variables

Variable Meaning
PWD Name of the current directory

EDITOR Name of the user’s favourite editor
PS1 Shell command prompt template
UID Current user’s user name
HOME Current user’s home directory
PATH List of directories containing executable programs that are

eligible as external commands
LOGNAME Current user’s user name (again)

$ export foo=bar

The same works for several variables simultaneously:

$ export foo baz

$ export foo=bar baz=quux

You can display all environment variables using the export command (with no
parameters). The env command (also with no parameters) also displays the current
environment. All shell variables (including those which are also environment
variables) can be displayed using the set command. The most common variables
and their meanings are shown in Table 9.1.

B The set command also does many other strange and wonderful things. You
will encounter it again in the Linup Front training manual Advanced Linux,
which covers shell programming.

B env, too, is actually intended to manipulate the process environment rather
than just display it. Consider the following example:

$ env foo=bar bash Launch child shell with foo

$ echo $foo

bar

$ exit Back to the parent shell
$ echo $foo

Not defined
$ _

B At least with bash (and relations) you don’t really need env to execute com-
mands with an extended environment – a simple

$ foo=bar bash

does the same thing. However, env also allows you to remove variables from
the environment temporarily (how?).

If you have had enough of a shell variable, you can delete it using the unsetDelete a variable

command. This also removes it from the environment. If you want to remove a
variable from the environment but keep it on as a shell variable, use “export -n”:

$ export foo=bar foo is an environment variable
$ export -n foo foo is a shell variable (only)
$ unset foo foo is gone and lost forever

Copyright © 2012 Linup Front GmbH

9.3 Command Types – Reloaded 123

9.3 Command Types – Reloaded

One application of shell variables is controlling the shell itself. Here’s another ex- Controlling the shell

ample: As we discussed in Chapter 4, the shell distinguishes internal and external
commands. External commands correspond to executable programs, which the
shell looks for in the directories that make up the value of the PATH environment
variable. Here is a typical value for PATH:

$ echo $PATH

/home/joe/bin:/usr/local/bin:/usr/bin:/bin:/usr/games

Individual directories are separated in the list by colons, therefore the list in the
example consists of five directories. If you enter a command like

$ ls

the shell knows that this isn’t an internal command (it knows its internal com-
mands) and thus begins to search the directories in PATH, starting with the leftmost
directory. In particular, it checks whether the following files exist:

/home/joe/bin/ls Nope …
/usr/local/bin/ls Still no luck …
/usr/bin/ls Again no luck …
/bin/ls Gotcha!

The directory /usr/games is not checked.

This implies that the /bin/ls file will be used to execute the ls command.

B Of course this search is a fairly involved process, which is why the shell
prepares for the future: If it has once identified the /bin/ls file as the im-
plementation of the ls command, it remembers this correspondence for the
time being. This process is called “hashing”, and you can see that it did take
place by applying type to the ls command.

$ type ls

ls is hashed (/bin/ls)

B The hash command tells you which commands your bash has “hashed” and
how often they have been invoked in the meantime. With “hash -r” you can
delete the shell’s complete hashing memory. There are a few other options
which you can look up in the bash manual or find out about using “help hash”.

B Strictly speaking, the PATH variable does not even need to be an environment
variable—for the current shell a shell variable would do just fine (see Exer-
cise 9.5). However it is convenient to define it as an environment variable
so the shell’s child processes (often also shells) use the desired value.

If you want to find out exactly which program the shell uses for a given external
command, you can use the which command:

$ which grep

/bin/grep

which uses the same method as the shell—it starts at the first directory in PATH and
checks whether the directory in question contains an executable file with the same
name as the desired command.

Copyright © 2012 Linup Front GmbH

124 9 More About The Shell

B which knows nothing about the shell’s internal commands; even though
something like “which test” returns “/usr/bin/test”, this does not imply
that this program will, in fact, be executed, since internal commands have
precedence. If you want to know for sure, you need to use the “type” shell
command.

The whereis command not only returns the names of executable programs, but
also documentation (man pages), source code and other interesting files pertain-
ing to the command(s) in question. For example:

$ whereis passwd

passwd: /usr/bin/passwd /etc/passwd /etc/passwd.org /usr/share/passwd�

� /usr/share/man/man1/passwd.1.gz /usr/share/man/man1/passwd.1ssl.gz�

� /usr/share/man/man5/passwd.5.gz

This uses a hard-coded method which is explained (sketchily) in whereis(1).

Exercises

C 9.3 [!2] Convince yourself that passing (or not passing) environment and
shell variables to child processes works as advertised, by working through
the following command sequence:

$ foo=bar foo is a shell variable
$ bash New shell (child process)
$ echo $foo

foo is not defined
$ exit Back to the parent shell
$ export foo foo is an environment variable
$ bash New shell (child process)
$ echo $foo

bar Environment variable was passed along
$ exit Back to the parent shell

C 9.4 [!2] What happens if you change an environment variable in the child
process? Consider the following command sequence:

$ foo=bar foo is a shell variable
$ bash New shell (child process)
$ echo $foo

bar Environment variable was passed along
$ foo=baz New value
$ exit Back to the parent shell
$ echo $foo What do we get??

C 9.5 [2] Make sure that the shell’s command line search works even if PATH is
a “only” simple shell variable rather than an environment variable. What
happens if you remove PATH completely?

C 9.6 [!1] Which executable programs are used to handle the following com-
mands: fgrep, sort, mount, xterm

C 9.7 [!1] Which files on your system contain the documentation for the
“crontab” command?

9.4 The Shell As A Convenient Tool

Since the shell is the most often used tool for many Linux users, its developers
have spared no trouble to make its use convenient. Here are some more useful
trifles:

Copyright © 2012 Linup Front GmbH

9.4 The Shell As A Convenient Tool 125

Command Editor You can edit command lines like in a simple text editor. Hence,
you can move the cursor around in the input line and delete or add characters
arbitrarily before finishing the input using the return key. The behaviour of this
editor can be adapted to that of the most popular editors on Linux (Chapter 3)
using the “set -o vi” and “set -o emacs” commands.

Aborting Commands With so many Linux commands around, it is easy to con-
fuse a name or pass a wrong parameter. Therefore you can abort a command while
it is being executed. You simply need to press the Ctrl + c keys at the same time.

TheHistory The shell remembers ever so many of your most recent commands as
part of the “history”, and you can move through this list using the ↑ and ↓ cur-
sor keys. If you find a previous command that you like you can either re-execute
it unchanged using ↩ , or else edit it as described above. You can search the list
“incrementally” using Ctrl + r – simply type a sequence of characters, and the
shell shows you the most recently executed command containing this sequence.
The longer your sequence, the more precise the search.

B When you log out of the system, the shell stores the history in the hidden
file ~/.bash_history and makes it available again after your next login. (You
may use a different file name by setting the HISTFILE variable to the name in
question.)

B A consequence of the fact that the history is stored in a “plain” file is that
you can edit it using a text editor (Chapter 3 tells you how). So in case
you accidentally enter your password on the command line, you can (and
should!) remove it from the history manually—in particular, if your system
is one of the more freewheeling ones where home directories are visible to
anybody.

Autocompletion A massive convenience is bash’s ability to automatically com- Completing command and file
namesplete command and file names. If you hit the Tab key, the shell completes an

incomplete input if the continuation can be identified uniquely. For the first word
of a command, bash considers all executable programs, within the rest of the com-
mand line all the files in the current or specified directory. If several commands
or files exist whose names start out equal, the shell completes the name as far as
possible and then signals acoustically that the command or file name may still be
incomplete. Another Tab press then lists the remaining possibilities.

B It is possible to adapt the shell’s completion mechanism to specific pro-
grams. For example, on the command line of a FTP client it might offer
the names of recently visited FTP servers in place of file names. Check the
bash documentation for details.

Table 9.2 gives an overview of the most important key strokes within bash.

Multiple Commands On One Line You are perfectly free to enter several com-
mands on the same input line. You merely need to separate them using a semi-
colon:

$ echo Today is; date

Today is

Fri 5 Dec 12:12:47 CET 2008

In this instance the second command will be executed once the first is done.

Copyright © 2012 Linup Front GmbH

126 9 More About The Shell

Table 9.2: Key Strokes within bash

Key Stroke Function

↑ or ↓ Scroll through most recent commands
Ctrl + r Search command history
← bzw. → Move cursor within current command line
Home oder Ctrl + a Jump to the beginning of the command line
End oder Ctrl + e Jump to the end of the command line
⇐ bzw. Del Delete character in front of/under the cursor,

respectively
Ctrl + t Swap the two characters in front of and under

the cursor
Ctrl + l Clear the screen
Ctrl + c Interrupt a command
Ctrl + d End the input (for login shells: log off)

Conditional Execution Sometimes it is useful to make the execution of the second
command depend on whether the first was executed correctly or not. Every Unix
process yields a return value which states whether it was executed correctly orreturn value

whether errors of whatever kind have occurred. In the former case, the return
value is 0; in the latter, it is different from 0.

B You can find the return value of a child process of your shell by looking at
the $? variable:

$ bash Start a child shell …
$ exit 33 … and exit again immediately
exit

$ echo $?

33 The value from our exit above
$ _

But this really has no bearing on the following.

With && as the “separator” between two commands (where there would other-
wise be the semicolon), the second command is only executed when the first has
exited successfully. To demonstrate this, we use the shell’s -c option, with which
you can pass a command to the child shell on the command line (impressive, isn’t
it?):

$ bash -c "exit 0" && echo "Successful"

Successful

$ bash -c "exit 33" && echo "Successful"

Nothing -- 33 isn’t success!

Conversely, with || as the “separator”, the second command is only executed
if the first did not finish successfully:

$ bash -c "exit 0" || echo "Unsuccessful"

$ bash -c "exit 33" || echo "Unsuccessful"

Unsuccessful

Exercises

C 9.8 [3] What is wrong about the command “echo "Hello!"”? (Hint: Experi-
ment with commands of the form “!-2” or “!ls”.)

Copyright © 2012 Linup Front GmbH

9.5 Commands From A File 127

9.5 Commands From A File

You can store shell commands in a file and execute en bloc. (You will learn how to
create a file conveniently in Chapter 3.) You just need to invoke the shell and pass
the file name as a parameter:

$ bash my-commands

Such a file is also called a shell script, and the shell has extensive programming shell script

features that we can only outline very briefly here. (The Linup Front training
manual Advanced Linux explains shell programming in great detail.)

B You can avoid having to prepend the bash command by inserting the magical
incantation

#!/bin/bash

as the first line of your file and making the file “executable”:

$ chmod +x my-commands

(You will find out more about chmod and access rights in Chapter 14.) After
this, the

$./my-commands

command will suffice.

If you invoke a shell script as above, whether with a prepended bash or as an
executable file, it is executed in a subshell, a shell that is a child process of the subshell

current shell. This means that changes to, e. g., shell or environment variables
do not influence the current shell. For example, assume that the file assignment

contains the line

foo=bar

Consider the following command sequence:

$ foo=quux

$ bash assignment Contains foo=bar

$ echo $foo

quux No change; assignment was only in subshell

This is generally considered a feature, but every now and then it would be quite
desirable to have commands from a file affect the current shell. That works, too:
The source command reads the lines in a file exactly as if you would type them
directly into the current shell—all changes to variables (among other things) hence
take effect in your current shell:

$ foo=quux

$ source assignment Contains foo=bar

$ echo $foo

bar Variable was changed!

A different name for the source command, by the way, is “.”. (You read correctly
– dot!) Hence

$ source assignment

Copyright © 2012 Linup Front GmbH

128 9 More About The Shell

is equivalent to

$. assignment

B Like program files for external commands, the files to be read using source

or . are searched in the directories given by the PATH variable.

9.6 The Shell As A Programming Language

Being able to execute shell commands from a file is a good thing, to be sure.
However, it is even better to be able to structure these shell commands such that
they do not have to do the same thing every time, but—for example—can ob-
tain command-line parameters. The advantages are obvious: In often-used pro-
cedures you save a lot of tedious typing, and in seldom-used procedures you can
avoid mistakes that might creep in because you accidentally leave out some im-
portant step. We do not have space here for a full explanation of the shell als a
programming language, but fortunately there is enough room for a few brief ex-
amples.

Command-line parameters When you pass command-line parameters to a shell
script, the shell makes them available in the variables $1, $2, …. Consider theSingle parameters

following example:

$ cat hello

#!/bin/bash

echo Hello $1, are you free $2?

$./hello Joe today

Hello Joe, are you free today?

$./hello Sue tomorrow

Hello Sue, are you free tomorrow?

The $* contains all parameters at once, and the number of parameters is in $#:All parameters

$ cat parameter

#!/bin/bash

echo $# parameters: $*

$./parameter

0 parameters:

$./parameter dog

1 parameters: dog

$./parameter dog cat mouse tree

4 parameters: dog cat mouse tree

Loops The for command lets you construct loops that iterate over a list of words
(separated by white space):

$ for i in 1 2 3

> do

> echo And $i!

> done

And 1!

And 2!

And 3!

Here, the i variable assumes each of the listed values in turn as the commands
between do and done are executed.

This is even more fun if the words are taken from a variable:

Copyright © 2012 Linup Front GmbH

9.6 The Shell As A Programming Language 129

$ list='4 5 6'

$ for i in $list

> do

> echo And $i!

> done

And 4!

And 5!

And 6!

If you omit the “in …”, the loop iterates over the command line parameters: Loop over parameters

$ cat sort-wc

#!/bin/bash

Sort files according to their line count

for f

do

echo `wc -l <"$f"` lines in $f

done | sort -n

$./sort-wc /etc/passwd /etc/fstab /etc/motd

(The “wc -l” command counts the lines of its standard input or the file(s) passed
on the command line.) Do note that you can redirect the standard output of a loop
to sort using a pipe line!

Alternatives You can use the aforementioned && and || operators to execute cer-
tain commands only under specific circumstances. The

#!/bin/bash

grepcp REGEX

rm -rf backup; mkdir backup

for f in *.txt

do

grep $1 "$f" && cp "$f" backup

done

script, for example, copies a file to the backup directory only if its name ends with
.txt (the for loop ensures this) and which contain at least one line matching the
regular expression that is passed as a parameter.

A useful tool for alternatives is the test command, which can check a large test

variety of conditions. It returns an exit code of 0 (success), if the condition holds,
else a non-zero exit code (failure). For example, consider

#!/bin/bash

filetest NAME1 NAME2 ...

for name

do

test -d "$name" && echo $name: directory

test -f "$name" && echo $name: file

test -L "$name" && echo $name: symbolic link

done

This script looks at a number of file names passed as parameters and outputs for
each one whether it refers to a directory, a (plain) file, or a symbolic link.

A The test command exists both as a free-standing program in /bin/test and
as a built-in command in bash and other shells. These variants can differ
subtly especially as far as more outlandish tests are concerned. If in doubt,
read the documentation.

Copyright © 2012 Linup Front GmbH

130 9 More About The Shell

You can use the if command to make more than one command depend on aif

condition (in a convenient and readable fashion). You may write “[…]” instead
of “test …”:

#!/bin/bash

filetest2 NAME1 NAME2 ...

for name

do

if [-L "$name"]

then

echo $name: symbolic link

elif [-d "$name"]

echo $name: directory

elif [-f "$name"]

echo $name: file

else

echo $name: no idea

fi

done

If the command after the if signals “success” (exit code 0), the commands after
then will be executed, up to the next elif, else, or fi. If on the other hand it sig-
nals “failure”, the command after the next elif will be evaluated next and its exit
code will be considered. The shell continues the pattern until the matching fi is
reached. Commands after the else are executed if none of the if or elif commands
resulted in “success”. The elif and else branches may be omitted if they are not
required.

More loops With the for loop, the number of trips through the loop is fixed at
the beginning (the number of words in the list). However, we often need to deal
with situations where it is not clear at the beginning how often a loop should be
executed. To handle this, the shell offers the while loop, which (like if) executeswhile

a command whose success or failure determines what to do about the loop: On
success, the “dependent” commands will be executed, on failure execution will
continue after the loop.

The following script reads a file like

Aunt Maggie:maggie@example.net:the delightful tea cosy

Uncle Bob:bob@example.com:the great football

(whose name is passed on the command line) and constructs a thank-you e-mail
message from each line (Linux is very useful in daily life):

#!/bin/bash

birthday FILE

IFS=:

while read name email present

do

(echo $name

echo ""

echo "Thank you very much for $present!"

echo "I enjoyed it very much."

echo ""

echo "Best wishes"

echo "Tim") | mail -s "Many thanks!" $email

done <$1

The read command reads the input file line by line and splits each line at the colonsread

Copyright © 2012 Linup Front GmbH

9.6 The Shell As A Programming Language 131

(variable IFS) into the three fields name, email, and present which are then made avail-
able as variables inside the loop. Somewhat counterintuitively, the input redirec-
tion for the loop can be found at the very end.

A Please test this script with innocuous e-mail addresses only, lest your rela-
tions become confused!

Exercises

C 9.9 [1] What is the difference (as far as loop execution is concerned) between

for f; do …; done

and

for f in $*; do …; done

? (Try it, if necessary)

C 9.10 [2] In the sort-wc script, why do we use the

wc -l <$f

instead of

wc -l $f

C 9.11 [2] Alter the grepcp such that the list of files to be considered is also
taken from the command line. (Hint: The shift shell command removes the
first command line parameter from $ and pulls all others up to close the gap.
After a shift, the previous $2 is now $1, $3 is $2 and so on.)

C 9.12 [2] Why does the filetest script output

$./filetest foo

foo: file

foo: symbolic link

for symbolic links (instead of just »foo: symbolic link«)?

Copyright © 2012 Linup Front GmbH

132 9 More About The Shell

Commands in this Chapter

. Reads a file containing shell commands as if they had been entered on
the command line bash(1) 127

date Displays the date and time date(1) 120
env Outputs the process environment, or starts programs with an adjusted

environment env(1) 122
export Defines and manages environment variables bash(1) 121
hash Shows and manages ”‘seen”’ commands in bash bash(1) 123
set Manages shell variables and options bash(1) 122
source Reads a file containing shell commands as if they had been entered on

the command line bash(1) 127
test Evaluates logical expressions on the command line

test(1), bash(1) 129
unset Deletes shell or environment variables bash(1) 122
whereis Searches executable programs, manual pages, and source code for given

programs whereis(1) 123
which Searches programs along PATH which(1) 123

Summary

• The sleep command waits for the number of seconds specified as the argu-
ment.

• The echo command outputs its arguments.
• The date and time may be determined using date

• Various bash features support interactive use, such as command and file
name autocompletion, command line editing, alias names and variables.

Copyright © 2012 Linup Front GmbH

10
The File System

Contents

10.1 Terms . 134
10.2 File Types. 134
10.3 The Linux Directory Tree 135
10.4 Directory Tree and File Systems. 143

Goals

• Understanding the terms “file” and “file system”
• Recognising the different file types
• Knowing your way around the directory tree of a Linux system
• Knowing how external file systems are integrated into the directory tree

Prerequisites

• Basic Linux knowledge (from the previous chapters)
• Handling files and directories (Chapter 6)

grd1-dateisystem-opt.tex[!removable] ()

134 10 The File System

Table 10.1: Linux file types

Type ls -l ls -F Create using …
plain file - name diverse programs
directory d name/

mkdir

symbolic link l name@ ln -s

device file b or c name mknod

FIFO (named pipe) p name| mkfifo

Unix-domain socket s name= no command

10.1 Terms

Generally speaking, a file is a self-contained collection of data. There is no re-file

striction on the type of the data within the file; a file can be a text of a few letters
or a multi-megabyte archive containing a user’s complete life works. Files do not
need to contain plain text. Images, sounds, executable programs and lots of other
things can be placed on a storage medium as files. To guess at the type of data
contained in a file you can use the file command:file

$ file /bin/ls /usr/bin/groups /etc/passwd

/bin/ls: ELF 32-bit LSB executable, Intel 80386,�

� version 1 (SYSV), for GNU/Linux 2.4.1,�

� dynamically linked (uses shared libs), for GNU/Linux 2.4.1, stripped

/usr/bin/groups: Bourne shell script text executable

/etc/passwd: ASCII text

B file guesses the type of a file based on rules in the /usr/share/file directory.
/usr/share/file/magic contains a clear-text version of the rules. You can define
your own rules by putting them into the /etc/magic file. Check magic(5) for
details.

To function properly, a Linux system normally requires several thousand different
files. Added to that are the many files created and owned by the system’s various
users.

A file system determines the method of arranging and managing data on afile system

storage medium. A hard disk basically stores bytes that the system must be able
to find again somehow—and as efficiently and flexibly as possible at that, even
for very huge files. The details of file system operation may differ (Linux knows
lots of different file systems, such as ext2, ext3, ext4, ReiserFS, XFS, JFS, btrfs, …)
but what is presented to the user is largely the same: a tree-structured hierarchy
of file and directory names with files of different types. (See also Chapter 6.)

B In the Linux community, the term “file system” carries several meanings.
In addition to the meaning presented here—“method of arranging bytes on
a medium”—, a file system is often considered what we have been calling
a “directory tree”. In addition, a specific medium (hard disk partition, USB
key, …) together with the data on it is often called a “file system”—in the
sense that we say, for example, that hard links (Section 6.4.2) do not work
“across file system boundaries”, that is, between two different partitions on
hard disk or between the hard disk and a USB key.

10.2 File Types

Linux systems subscribe to the basic premise “Everything is a file”. This may seem
confusing at first, but is a very useful concept. Six file types may be distinguished
in principle:

Copyright © 2012 Linup Front GmbH

10.3 The Linux Directory Tree 135

Plain files This group includes texts, graphics, sound files, etc., but also exe-
cutable programs. Plain files can be generated using the usual tools like
editors, cat, shell output redirection, and so on.

Directories Also called “folders”; their function, as we have mentioned, is to help
structure storage. A directory is basically a table giving file names and as-
sociated inode numbers. Directories are created using the mkdir command.

Symbolic links Contain a path specification redirecting accesses to the link to
a different file (similar to “shortcuts” in Windows). See also Section 6.4.2.
Symbolic links are created using ln -s.

Device files These files serve as interfaces to arbitrary devices such as disk drives.
For example, the file /dev/fd0 represents the first floppy drive. Every write
or read access to such a file is redirected to the corresponding device. De-
vice files are created using the mknod command; this is usually the system
administrator’s prerogative and is thus not explained in more detail in this
manual.

FIFOs Often called “named pipes”. Like the shell’s pipes, they allow the direct
communication between processes without using intermediate files. A pro-
cess opens the FIFO for writing and another one for reading. Unlike the
pipes that the shell uses for its pipelines, which behave like files from a pro-
gram’s point of view but are “anonymous”—they do not exist within the file
system but only between related processes—, FIFOs have file names and can
thus be opened like files by arbitrary programs. Besides, FIFOs may have
access rights (pipes may not). FIFOs are created using the mkfifo command.

Unix-domain sockets Like FIFOs, Unix-domain sockets are a method of inter-
process communication. They use essentially the same programming in-
terface as “real” network communications across TCP/IP, but only work
for communication peers on the same computer. On the other hand, Unix-
domain sockets are considerably more efficient than TCP/IP. Unlike FIFOs,
Unix-domain sockets allow bi-directional communications—both partici-
pating processes can send as well as receive data. Unix-domain sockets are
used, e. g., by the X11 graphic system, if the X server and clients run on the
same computer. There is no special program to create Unix-domain sockets.

Exercises

C 10.1 [3] Check your system for examples of the various file types. (Table 10.1
shows you how to recognise the files in question.)

10.3 The Linux Directory Tree

A Linux system consists of hundreds of thousands of files. In order to keep track,
there are certain conventions for the directory structure and the files comprising a
Linux system, the Filesystem Hierarchy Standard (FHS). Most distributions adhere FHS

to this standard (possibly with small deviations). The FHS describes all directories
immediately below the file system’s root as well as a second level below /usr.

The file system tree starts at the root directory, “/” (not to be confused with root directory

/root, the home directory of user root). The root directory contains either just sub-
directories or else additionally, if no /boot directory exists, the operating system
kernel.

You can use the “ls -la /” command to list the root directory’s subdirectories.
The result should look similar to Figure 10.1. The individual subdirectories follow
FHS and therefore contain approximately the same files on every distribution. We
shall now take a closer look at some of the directories:

Copyright © 2012 Linup Front GmbH

136 10 The File System

$ cd /

$ ls -l

insgesamt 125

drwxr-xr-x 2 root root 4096 Dez 20 12:37 bin

drwxr-xr-x 2 root root 4096 Jan 27 13:19 boot

lrwxrwxrwx 1 root root 17 Dez 20 12:51 cdrecorder�

� -> /media/cdrecorder

lrwxrwxrwx 1 root root 12 Dez 20 12:51 cdrom -> /media/cdrom

drwxr-xr-x 27 root root 49152 Mär 4 07:49 dev

drwxr-xr-x 40 root root 4096 Mär 4 09:16 etc

lrwxrwxrwx 1 root root 13 Dez 20 12:51 floppy -> /media/floppy

drwxr-xr-x 6 root root 4096 Dez 20 16:28 home

drwxr-xr-x 6 root root 4096 Dez 20 12:36 lib

drwxr-xr-x 6 root root 4096 Feb 2 12:43 media

drwxr-xr-x 2 root root 4096 Mär 21 2002 mnt

drwxr-xr-x 14 root root 4096 Mär 3 12:54 opt

dr-xr-xr-x 95 root root 0 Mär 4 08:49 proc

drwx------ 11 root root 4096 Mär 3 16:09 root

drwxr-xr-x 4 root root 4096 Dez 20 13:09 sbin

drwxr-xr-x 6 root root 4096 Dez 20 12:36 srv

drwxrwxrwt 23 root root 4096 Mär 4 10:45 tmp

drwxr-xr-x 13 root root 4096 Dez 20 12:55 usr

drwxr-xr-x 17 root root 4096 Dez 20 13:02 var

Figure 10.1: Content of the root directory (SUSE)

B There is considerable consensus about the FHS, but it is just as “binding”
as anything on Linux, i. e., not that much. On the one hand, there certainly
are Linux systems (for example the one on your broadband router or PVR)
that are mostly touched only by the manufacturer and where conforming
to every nook and cranny of the FHS does not gain anything. On the other
hand, you may do whatever you like on your own system, but must be pre-
pared to bear the consequences—your distributor assures you to keep to his
side of the FHS bargain, but also expects you not to complain if you are not
playing completely by the rules and problems do occur. For example, if you
install a program in /usr/bin and the file in question gets overwritten during
the next system upgrade, this is your own fault since, according to the FHS,
you are not supposed to put your own programs into /usr/bin (/usr/local/bin
would have been correct).

The Operating System Kernel—/boot The /boot directory contains the actual op-
erating system: vmlinuz is the Linux kernel. In the /boot directory there are also
other files required for the boot loader (LILO or GRUB).

General Utilities—/bin In /bin there are the most important executable programs
(mostly system programs) which are necessary for the system to boot. This in-
cludes, for example, mount and mkdir. Many of these programs are so essential
that they are needed not just during system startup, but also when the system is
running—like ls and grep. /bin also contains programs that are necessary to get a
damaged system running again if only the file system containing the root direc-
tory is available. Additional programs that are not required on boot or for system
repair can be found in /usr/bin.

Special System Programs—/sbin Like /bin, /sbin contains programs that are nec-
essary to boot or repair the system. However, for the most part these are system

Copyright © 2012 Linup Front GmbH

10.3 The Linux Directory Tree 137

configuration tools that can really be used only by root. “Normal” users can use
some of these programs to query the system, but can’t change anything. As with
/bin, there is a directory called /usr/sbin containing more system programs.

System Libraries—/lib This is where the “shared libraries” used by programs
in /bin and /sbin reside, as files and (symbolic) links. Shared libraries are pieces
of code that are used by various programs. Such libraries save a lot of resources,
since many processes use the same basic parts, and these basic parts must then be
loaded into memory only once; in addition, it is easier to fix bugs in such libraries
when they are in the system just once and all programs fetch the code in question
from one central file. Incidentally, below /lib/modules there are kernel modules, kernel modules

i. e., kernel code which is not necessarily in use—device drivers, file systems, or
network protocols. These modules can be loaded by the kernel when they are
needed, and in many cases also be removed after use.

Device Files—/dev This directory and its subdirectories contain a plethora of en-
tries for device files. Device files form the interface between the shell (or, gener- Device files

ally, the part of the system that is accessible to command-line users or program-
mers) to the device drivers inside the kernel. They have no “content” like other
files, but refer to a driver within the kernel via “device numbers”.

B In former times it was common for Linux distributors to include an entry in
/dev for every conceivable device. So even a laptop Linux system included
the device files required for ten hard disks with 63 partitions each, eight
ISDN adapters, sixteen serial and four parallel interfaces, and so on. Today
the trend is away from overfull /dev directories with one entry for every
imaginable device and towards systems more closely tied to the running
kernel, which only contain entries for devices that actually exist. The magic
word in this context is udev (short for userspace /dev) and will be discussed in
more detail in Linux Administration I.

Linux distinguishes between character devices and block devices. A character character devices

block devicesdevice is, for instance, a terminal, a mouse or a modem—a device that provides
or processes single characters. A block device treats data in blocks—this includes
hard disks or floppy disks, where bytes cannot be read singly but only in groups
of 512 (or some such). Depending on their flavour, device files are labelled in “ls
-l” output with a “c” or “b”:

crw-rw-rw- 1 root root 10, 4 Oct 16 11:11 amigamouse

brw-rw---- 1 root disk 8, 1 Oct 16 11:11 sda1

brw-rw---- 1 root disk 8, 2 Oct 16 11:11 sda2

crw-rw-rw- 1 root root 1, 3 Oct 16 11:11 null

Instead of the file length, the list contains two numbers. The first is the “major
device number” specifying the device’s type and governing which kernel driver
is in charge of this device. For example, all SCSI hard disks have major device
number 8. The second number is the “minor device number”. This is used by the
driver to distinguish between different similar or related devices or to denote the
various partitions of a disk.

There are several notable pseudo devices. The null device, /dev/null, is like a pseudo devices

“dust bin” for program output that is not actually required, but must be directed
somewhere. With a command like

$ program >/dev/null

the program’s standard output, which would otherwise be displayed on the ter-
minal, is discarded. If /dev/null is read, it pretends to be an empty file and returns
end-of-file at once. /dev/null must be accessible to all users for reading and writ-
ing.

Copyright © 2012 Linup Front GmbH

138 10 The File System

The “devices” /dev/random and /dev/urandom return random bytes of “crypto-
graphic quality” that are created from “noise” in the system—such as the intervals
between unpredictable events like key presses. Data from /dev/random is suitable
for creating keys for common cryptographic algorithms. The /dev/zero file returns
an unlimited supply of null bytes; you can use these, for example, to create or
overwrite files with the dd command.

Configuration Files—/etc The /etc directory is very important; it contains the
configuration files for most programs. Files /etc/inittab and /etc/init.d/*, for ex-
ample, contain most of the system-specific data required to start system services.
Here is a more detailed descriptionof the most important files—except for a few
of them, only user root has write permission but everyone may read them.

/etc/fstab This describes all mountable file systems and their properties (type,
access method, “mount point”).

/etc/hosts This file is one of the configuration files of the TCP/IP network. It maps
the names of network hosts to their IP addresses. In small networks and on
freestanding hosts this can replace a name server.

/etc/inittab The /etc/inittab file is the configuration file for the init program and
thus for the system start.

/etc/init.d/* This directory contains the “init scripts” for various system services.
These are used to start up or shut down system services when the system is
booted or switched off.

On Red Hat distributions, this directory is called /etc/rc.d/init.d.

/etc/issue This file contains the greeting that is output before a user is asked to
log in. After the installation of a new system this frequently contains the
name of the vendor.

/etc/motd This file contains the “message of the day” that appears after a user has
successfully logged in. The system administrator can use this file to notify
users of important facts and events1.

/etc/mtab This is a list of all mounted file systems including their mount points.
/etc/mtab differs from /etc/fstab in that it contains all currently mounted file
systems, while /etc/fstab contains only settings and options for file systems
that might be mounted—typically on system boot but also later. Even that
list is not exhaustive, since you can mount file systems via the command
line where and how you like.

B We’re really not supposed to put that kind of information in a file
within /etc, where files ought to be static. Apparently, tradition has
carried the day here.

/etc/passwd In /etc/passwd there is a list of all users that are known to the system, to-
gether with various items of user-specific information. In spite of the name
of the file, on modern systems the passwords are not stored in this file but
in another one called /etc/shadow. Unlike /etc/passwd, that file is not readable
by normal users.

Accessories—/opt This directory is really intended for third-party software—
complete packages prepared by vendors that are supposed to be installable with-
out conflicting with distribution files or locally-installed files. Such software pack-
ages occupy a subdirectory /opt/⟨package⟩. By rights, the /opt directory should be
completely empty after a distribution has been installed on an empty disk.

1There is a well-known claim that the only thing all Unix systems in the world have in common is
the “message of the day” asking users to remove unwanted files since all the disks are 98% full.

Copyright © 2012 Linup Front GmbH

10.3 The Linux Directory Tree 139

“Unchanging Files”—/usr In /usr there are various subdirectories containing
programs and data files that are not essential for booting or repairing the system
or otherwise indispensable. The most important directories include:

/usr/bin System programs that are not essential for booting or otherwise impor-
tant

/usr/sbin More system programs for root

/usr/lib Further libraries (not used for programs in /bin or /sbin

/usr/local Directory for files installed by the local system administrator. Corre-
sponds to the /opt directory—the distribution may not put anything here

/usr/share Architecture-independent data. In principle, a Linux network consist-
ing, e. g., of Intel, SPARC and PowerPC hosts could share a single copy of
/usr/share on a central server. However, today disk space is so cheap that no
distribution takes the trouble of actually implementing this.

/usr/share/doc Documentation, e. g., HOWTOs

/usr/share/info Info pages

/usr/share/man Manual pages (in subdirectories)

/usr/src Source code for the kernel and other programs (if available)

B The name /usr is often erroneously considered an acronym of “Unix system
resources”. Originally this directory derives from the time when computers
often had a small, fast hard disk and another one that was bigger but slower.
All the frequently-used programs and files went to the small disk, while the
big disk (mounted as /usr) served as a repository for files and programs
that were either less frequently used or too big. Today this separation can
be exploited in another way: With care, you can put /usr on its own partition
and mount that partition “read-only”. It is even possible to import /usr from Read-only /usr

a remote server, even though the falling prices for disk storage no longer
make this necessary (the common Linux distributions do not support this,
anyway).

A Window into the Kernel—/proc This is one of the most interesting and impor-
tant directories. /proc is really a “pseudo file system”: It does not occupy space on pseudo file system

disk, but its subdirectories and files are created by the kernel if and when someone
is interested in their content. You will find lots of data about running processes
as well as other information the kernel possesses about the computer’s hardware.
For instance, in some files you will find a complete hardware analysis. The most
important files include:

/proc/cpuinfo This contains information about the CPU’s type and clock frequency.

/proc/devices This is a complete list of devices supported by the kernel including
their major device numbers. This list is consulted when device files are cre-
ated.

/proc/dma A list of DMA channels in use. On today’s PCI-based systems this is
neither very interesting nor important.

/proc/interrupts A list of all hardware interrupts in use. This contains the inter-
rupt number, number of interrupts triggered and the drivers handling that
particular interrupt. (An interrupt occurs in this list only if there is a driver
in the kernel claiming it.)

/proc/ioports Like /proc/interrupts, but for I/O ports.

Copyright © 2012 Linup Front GmbH

140 10 The File System

/proc/kcore This file is conspicuous for its size. It makes available the computer’s
complete RAM and is required for debugging the kernel. This file requires
root privileges for reading. You do well to stay away from it!

/proc/loadavg This file contains three numbers measuring the CPU load during
the last 1, 5 and 15 minutes. These values are usually output by the uptime

program

/proc/meminfo Displays the memory and swap usage. This file is used by the free

program

/proc/mounts Another list of all currently mounted file systems, mostly identical to
/etc/mtab

/proc/scsi In this directory there is a file called scsi listing the available SCSI de-
vices. There is another subdirectory for every type of SCSI host adapter in
the system containing a file 0 (1, 2, …, for multiple adapters of the same type)
giving information about the SCSI adapter.

/proc/version Contains the version number and compilation date of the current
kernel.

B Back when /proc had not been invented, programs like the process status
display tool, ps, which had to access kernel information, needed to include
considerable knowledge about internal kernel data structures as well as the
appropriate access rights to read the data in question from the running ker-
nel. Since these data structures used to change fairly rapidly, it was often
necessary to install a new version of these programs along with a new ver-
sion of the kernel. The /proc file system serves as an abstraction layer be-
tween these internal data structures and the utilities: Today you just need
to ensure that after an internal change the data formats in /proc remain the
same—and ps and friends continue working as usual.

Hardware Control—/sys The Linux kernel has featured this directory since ver-
sion 2.6. Like /proc, it is made available on demand by the kernel itself and al-
lows, in an extensive hierarchy of subdirectories, a consistent view on the available
hardware. It also supports management operations on the hardware via various
special files.

B Theoretically, all entries in /proc that have nothing to do with individual
processes should slowly migrate to /sys. When this strategic goal is going
to be achieved, however, is anybody’s guess.

Dynamically Changing Files—/var This directory contains dynamically changing
files, distributed across different directories. When executing various programs,
the user often creates data (frequently without being aware of the fact). For ex-
ample, the man command causes compressed manual page sources to be uncom-
pressed, while formatted man pages may be kept around for a while in case they
are required again soon. Similarly, when a document is printed, the print data
must be stored before being sent to the printer, e. g., in /var/spool/cups. Files in
/var/log record login and logout times and other system events (the “log files”),log files

/var/spool/cron contains information about regular automatic command invoca-
tions, and users’ unread electronic mail is kept in /var/mail.

B Just so you heard about it once (it might be on the exam): On Linux, the
system log files are generally handled by the “syslog” service. A program
called syslogd accepts messages from other programs and sorts these ac-
cording to their origin and priority (from “debugging help” to “error” and
“emergency, system is crashing right now”) into files below /var/log, where
you can find them later on. Other than to files, the syslog service can also

Copyright © 2012 Linup Front GmbH

10.3 The Linux Directory Tree 141

write its messages elsewhere, such as to the console or via the network to
another computer serving as a central “management station” that consoli-
dates all log messages from your data center.

B Besides the syslogd, some Linux distributions also contain a klogd service.
Its job is to accept messages from the operating system kernel and to pass
them on to syslogd. Other distributions do not need a separate klogd since
their syslogd can do that job itself.

B The Linux kernel emits all sorts of messages even before the system is booted
far enough to run syslogd (and possibly klogd) to accept them. Since the mes-
sages might still be important, the Linux kernel stores them internally, and
you can access them using the dmesg command.

Transient Files—/tmp Many utilities require temporary file space, for example
some editors or sort. In /tmp, all programs can deposit temporary data. Many
distributions can be set up to clean out /tmp when the system is booted; thus you
should not put anything of lasting importance there.

B According to tradition, /tmp is emptied during system startup but /var/tmp

isn’t. You should check what your distribution does.

Server Files—/srv Here you will find files offered by various server programs,
such as

drwxr-xr-x 2 root root 4096 Sep 13 01:14 ftp

drwxr-xr-x 5 root root 4096 Sep 9 23:00 www

This directory is a relatively new invention, and it is quite possible that it does
not yet exist on your system. Unfortunately there is no other obvious place for
web pages, an FTP server’s documents, etc., that the FHS authors could agree on
(the actual reason for the introduction of /srv), so that on a system without /srv,
these files could end up somewhere completely different, e. g., in subdirectories
of /usr/local or /var.

Access to CD-ROM or Floppies—/media This directory is often generated auto-
matically; it contains additional empty directories, like /media/cdrom and /media/

floppy, that can serve as mount points for CD-ROMs and floppies. Depending
on your hardware setup you should feel free to add further directories such as
/media/dvd, if these make sense as mount points and have not been preinstalled by
your distribution vendor.

Access to Other Storage Media—/mnt This directory (also empty) serves as a
mount point for short-term mounting of additional storage media. With some
distributions, such as those by Red Hat, media mountpoints for CD-ROM, floppy,
… might show up here instead of below /media.

User Home Directories—/home This directory contains the home directories of
all users except root (whose home directory is located elsewhere).

B If you have more than a few hundred users, it is sensible, for privacy protec-
tion and efficiency, not to keep all home directories as immediate children
of /home. You could, for example, use the users’ primary group as a criterion
for further subdivision:

/home/support/jim

/home/develop/bob

�����

Copyright © 2012 Linup Front GmbH

142 10 The File System

Table 10.2: Directory division according to the FHS

static dynamic
local /etc, /bin, /sbin, /lib /dev, /var/log

remote /usr, /opt /home, /var/mail

Administrator’s Home Directory—/root The system administrator’s home direc-
tory is located in /root. This is a completely normal home directory similar to that
of the other users, with the marked difference that it is not located below /home but
immediately below the root directory (/).

The reason for this is that /home is often located on a file system on a separate
partition or hard disk. However, root must be able to access their own user envi-
ronment even if the separate /home file system is not accessible for some reason.

Lost property—lost+found (ext file systems only; not mandated by FHS.) This di-
rectory is used for files that look reasonable but do not seem to belong to any
directory. The file system consistency checker creates liks to such files in the
lost+found directory on the same file system, so the system administrator can fig-
ure out where the file really belongs; lost+found is created “on the off-chance” for
the file system consistency checker to find in a fixed place (by convention, on the
ext file systems, it always uses inode number 11).

B Another motivation for the directory arrangement is as follows: The FHS di-
vides files and directories roughly according to two criteria—do they need
to be available locally or can they reside on another computer and be ac-
cessed via the network, and are their contents static (do files only change
by explicit administrator action) or do they change while the system is run-
ning? (Table 10.2)
The idea behind this division is to simplify system administration: Direc-
tories can be moved to file servers and maintained centrally. Directories
that do not contain dynamic data can be mounted read-only and are more
resilient to crashes.

Exercises

C 10.2 [1] How many programs does your system contain in the “usual”
places?

C 10.3 [I]f grep is called with more than one file name on the command line,
it outputs the name of the file in question in front of every matching line.
This is possibly a problem if you invoke grep with a shell wildcard pattern
(such as “*.txt”), since the exact format of the grep output cannot be fore-
seen, which may mess up programs further down the pipeline. How can
you enforce output of the file name, even if the search pattern expands to a
single file name only? (Hint: There is a very useful “file” in /dev.)

C 10.4 [T]he “cp foo.txt /dev/null” command does basically nothing, but the
“mv foo.txt /dev/null”—assuming suitable access permissions—replaces
/dev/null by foo.txt. Why?

C 10.5 [2] On your system, which (if any) software packages are installed be-
low /opt? Which ones are supplied by the distribution and which ones are
third-party products? Should a distribution install a “teaser version” of a
third-party product below /opt or elsewhere? What do you think?

C 10.6 [1] Why is it inadvisable to make backup copies of the directory tree
rooted at /proc?

Copyright © 2012 Linup Front GmbH

10.4 Directory Tree and File Systems 143

10.4 Directory Tree and File Systems

A Linux system’s directory tree usually extends over more than one partition on
disk, and removable media like CD-ROM disks, USB keys as well as portable MP3
players, digital cameras and so on must be taken into account. If you know your
way around Microsoft Windows, you are probably aware that this problem is
solved there by means of identifying different “drives” by means of letters—on
Linux, all available disk partitions and media are integrated in the directory tree
starting at “/”.

In general, nothing prevents you from installing a complete Linux system
on a single hard disk partition. However, it is common to put at least the /home partitioning

directory—where users’ home directories reside—on its own partition. The ad-
vantage of this approach is that you can re-install the actual operating system,
your Linux distribution, completely from scratch without having to worry about
the safety of your own data (you simply need to pay attention at the correct mo-
ment, namely when you pick the target partition(s) for the installation in your
distribution’s installer.) This also simplifies the creation of backup copies.

On larger server systems it is also quite usual to assign other directories, typi- server systems

cally /tmp, /var/tmp, or /var/spool, their own partitions. The goal is to prevent users
from disturbing system operations by filling important partitions completely. For
example, if /var is full, no protocol messages can be written to disk, so we want to
keep users from filling up the file system with large amounts of unread mail, un-
printed print jobs, or giant files in /var/tmp. On the other hand, all these partitions
tend to clutter up the system.

B More information and strategies for partitioning are presented in the Linup
Front training manual, Linux Administration I.

The /etc/fstab file describes how the system is assembled from various disk /etc/fstab

partitions. During startup, the system arranges for the various file systems to be
made available—the Linux insider says “mounted”—in the correct places, which
you as a normal user do not need to worry about. What you may in fact be inter-
ested in, though, is how to access your CD-ROM disks and USB keys, and these
need to be mounted, too. Hence we do well to cover this topic briefly even though
it is really administrator country.

To mount a medium, you require both the name of the device file for the
medium (usually a block device such as /dev/sda1) and a directory somewhere in
the directory tree where the content of the medium should appear—the so-called
mount point. This can be any directory.

B The directory doesn’t even have to be empty, although you cannot access the
original content once you have mounted another medium “over” it. (The
content reappears after you unmount the medium.)

A In principile, somebody could mount a removable medium over an impor-
tant system directory such as /etc (ideally with a file called passwd containing
a root entry without a password). This is why mounting of file systems in
arbitrary places within the directory tree is restricted to the system adminis-
trator, who will have no need for shenanigans like these, as they are already
root.

B Earlier on, we called the “device file for the medium” /dev/sda1. This is really
the first partition on the first SCSI disk drive in the system—the real name
may be completely different depending on the type of medium you are us-
ing. Still it is an obvious name for USB keys, which for technical reasons are
treated by the system as if they were SCSI devices.

With this information—device name and mount point—a system administra-
tor can mount the medium as follows:

Copyright © 2012 Linup Front GmbH

144 10 The File System

mount /dev/sda1 /media/usb

This means that a file called file on the medium would appear as /media/usb/file

in the directory tree. With a command such as

umount /media/usb Note: no ‘‘n’’

the administrator can also unmount the medium again.

Commands in this Chapter

dmesg Outputs the content of the kernel message buffer dmesg(8) 141
file Guesses the type of a file’s content, according to rules file(1) 134
free Displays main memory and swap space usage free(1) 140
klogd Accepts kernel log messages klogd(8) 141
mkfifo Creates FIFOs (named pipes) mkfifo(1) 135
mknod Creates device files mknod(1) 135
syslogd Handles system log messages syslogd(8) 141
uptime Outputs the time since the last system boot as well as the system load

averages uptime(1) 139

Summary

• Files are self-contained collections of data stored under a name. Linux uses
the “file” abstraction also for devices and other objects.

• The method of arranging data and administrative information on a disk is
called a file system. The same term covers the complete tree-structured hi-
erarchy of directories and files in the system or a specific storage medium
together with the data on it.

• Linux file systems contain plain files, directories, symbolic links, device files
(two kinds), FIFOs, and Unix-domain sockets.

• The Filesystem Hierarchy Standard (FHS) describes the meaning of the most
important directories in a Linux system and is adhered to by most Linux
distributions.

Copyright © 2012 Linup Front GmbH

11
Archiving and Compressing Files

Contents

11.1 Archival and Compression 146
11.2 Archiving Files Using tar 147
11.3 Compressing Files with gzip 150
11.4 Compressing Files with bzip2 151
11.5 Archiving and Compressing Files Using zip and unzip 152

Goals

• Understanding the terms “archival” and “compression”
• Being able to use tar

• Being able to compress and uncompress files with gzip and bzip2

• Being able to process files with zip and unzip

Prerequisites

• Use of the shell (Chapter 4)
• Handling files and directories (Chapter 6)
• Use of filters (Chapter 8)

grd1-targz-opt.tex[!cpio] ()

146 11 Archiving and Compressing Files

11.1 Archival and Compression

“Archival” is the process of collecting many files into a single on. The typical ap-
plication is storing a directory tree on magnetic tape—the magnetic tape drive
appears within Linux as a device file onto which the output of the archival pro-
gram can be written. Conversely, you can read the tape drive’s device file using a
de-archiver and reconstruct the directory tree from the archived data. Since most
of the relevant programs can both create and unravel archives, we discuss both
operations under the heading of “archival”.

“Compression” is the rewriting of data into a representation that saves space
compared to the original. Here we are only interested in “lossless” compression,
where it is possible to reconstruct the original in identical form from the com-
pressed data.

B The alternative is to achieve a higher degree of compression by abandoning
the requirement of being able to recreate the original perfectly. This “lossy”
approach is taken by compression schemes like JPEG for photographs and
“MPEG-1 Audio Layer 3” (better known as “MP3”) for audio data. The se-
cret here is to get rid of extraneous data; with MP3, for example, we throw
out those parts of the signal that, based on a “psycho-acoustic model” of hu-
man hearing, the listener will not be able to make out, anyway, and encode
the rest as efficiently as possible. JPEG works along similar lines.

As a simple illustration, you might represent a character string likerun-length encoding

ABBBBAACCCCCAAAABAAAAAC

more compactly as

A*4BAA*5C*4AB*5AC

Here, “*4B” stands for a sequence of four “B” characters. This simple approach
is called “run-length encoding” and is found even today, for example, in fax ma-
chines (with refinements). “Real” compression programs like gzip or bzip2 use
more sophisticated methods.

While programs that combine archival and compression are used widely in the
Windows world (PKZIP, WinZIP and so on), both steps are commonly handled
separately on Linux and Unix. A popular approach is to archive a set of files first
using tar before compressing the output of tar using, say, gzip—PKZIP and friends
compress each file on its own and then collect the compressed files into a single
big one.

The advantage of this approach compared to that of PKZIP and its relatives is
that compression can take place across several original files, which yields higher
compression rates. However, this also counts as a disadvantage: If the com-
pressed archive is damaged (e. g., due to a faulty medium or flipped bits during
transmission), the whole archive can become unusable starting at that point.

B Naturally even on Linux nobody keeps you from first compressing your files
and then archiving them. Unfortunately this is not as convenient as the
other approach.

B Of course there are Linux implementations of compression and archival
programs popular in the Windows world, like zip and rar.

Exercises

C 11.1 [1] Why does the run-length encoding example use AA instead of *2A?

C 11.2 [2] How would your represent the string “A*2B****A” using the run-
length encoding method shown above?

Copyright © 2012 Linup Front GmbH

11.2 Archiving Files Using tar 147

11.2 Archiving Files Using tar

The name tar derives from “tape archive”. The program writes individual files to
the archival file one after the other and annotates them with additional informa-
tion (like the date, access permissions, owner, …). Even though tar was originally
meant to be used with magnetic tape drives, tar archives can be written directly
on various media. Among other uses, tar files are the standard format for dissem-
inating the source code for Linux and other free software packages.

The GNU implementation of tar commonly used on Linux includes various ex-
tensions not found in the tar implementations of other Unix variants. For example,
GNU tar supports creating multi-volume archives spanning several media. This multi-volume archives

even allows backup copies to floppy disk, which of course is only worthwhile for
small archives.

B A small remark on the side: The split command lets you cut large files like
archives into convenient pieces that can be copied to floppy disks or sent
via e-mail, and can be re-joined at their destination using cat.

The advantages of tar include: It is straightforward to use, it is reliable and
works well, it can be used universally on all Unix and Linux systems. Its disad-
vantages are that faults on the medium may lead to problems, and not all versions
of tar can store device files (which is only an issue if you want to perform a full
backup of your system).

tar archives can contain files and whole directory hierarchies. If Windows me-
dia have been mounted into the directory tree across the network, even their con-
tent can be archived using tar. Archives created using tar are normally uncom-
pressed, but can be compressed using external compression software (nowadays
usually gzip or bzip2). This is not a good idea as far as backup copies are concerned,
since bit errors in the compressed data usually lead to the loss of the remainder
of the archive.

Typical suffixes for tar archives include .tar, .tar.bz2, or .tar.gz, depending on
whether they have been compressed not at all, using bzip2, or using gzip. The .tgz

suffix is also common when zipped tar-formatted data need to be stored on a DOS
file system. tar’s syntax is

tar ⟨options⟩ ⟨file⟩||⟨directory⟩ …

and the most important include: tar options

-c (“create”) creates a new archive

-f file creates the new archive on (or reads an existing archive from) ⟨file⟩, where
⟨file⟩ can be a plain file or a device file (among others)

-M handles multi-volume archives

-r appends files to the archive (not for magnetic tape)

-t displays the “table of contents” of the archive

-u replaces files which are newer than their version inside the archive. If a file is
not archived at all, it is inserted (not for magnetic tape)

-v Verbose mode—displays what tar is doing at the moment

-x extracts files and directories from an archive

-z compresses or decompresses the archive using gzip

-Z compresses or decompresses the archive using compress (not normally available
on Linux)

-j compresses or decompresses the archive using bzip2

Copyright © 2012 Linup Front GmbH

148 11 Archiving and Compressing Files

tar’s option syntax is somewhat unusual, in that it is possible (as is elsewhere)option syntax

to “bundle” several options after a single dash, including (extraordinarily) ones
such as -f that take a parameter. Option parameters need to be specified after the
“bundle” and are matched to the corresponding parameter-taking options within
the bundle in turn.

B You may leave out the dash in front of the first “option bundle”—you will
often see commands like

B tar cvf …

However, we don’t recommend this.

The following example archives all files within the current directory whose
names begin with data to the file data.tar in the user’s home directory:

tar -cvf ~/data.tar data*

data1

data10

data2

data3

�����

The -c option arranges for the archive to be newly created, “-f ~/data.tar” gives the
name for the archive. The -v option does not change anything about the result; it
only causes the names of files to appear on the screen as they are being archived.
(If one of the files to be archived is really a directory, the complete content of the
directory will also be added to the archive.)

tar also lets you archive complete directories. It is better to do this from thedirectories

enclosing directory, which will create a subdirectory in the archive which is also
recreated when the archive is unpacked. The following example shows this in
more detail.

cd /

tar -cvf /tmp/home.tar /home

The system administrator root stores an archive of the /home directory (i. e., all user
data) under the name of home.tar. This is stored in the /tmp directory.

B If files or directories are given using absolute path names, tar automatically
stores them as relative path names (in other words, the “/” at the start of
each name is removed). This avoids problems when unpacking the archive
on other computers (see Exercise 11.6).

You can display the “table of contents” of an archive using the -t option:

$ tar -tf data.tar

data1

data10

data2

�����

The -v option makes tar somewhat more talkative:

$ tar -tvf data.tar

-rw-r--r-- joe/joe 7 2009-01-27 12:04 data1

-rw-r--r-- joe/joe 8 2009-01-27 12:04 data10

-rw-r--r-- joe/joe 7 2009-01-27 12:04 data2

�����

Copyright © 2012 Linup Front GmbH

11.2 Archiving Files Using tar 149

You can unpack the data using the -x option:

$ tar -xf data.tar

In this case tar produces no output on the terminal at all—you have to give the -v

option again:

$ tar -xvf data.tar

data1

data10

data2

�����

B If the archive contains a directory hierarchy, this is faithfully reconstructed
in the current direcotry. (You will remember that tar makes relative path
names from all absolute ones.) You can unpack the archive relative to any
directory—it always keeps its structure.

You can also give file or directory names on unpacking. In this case only the
files or directories in question will be unpacked. However, you need to take care
to match the names in the archive exactly:

$ tar -cf data.tar ./data

$ tar -tvf data.tar

drwxr-xr-x joe/joe 0 2009-01-27 12:04 ./data/

-rw-r--r-- joe/joe 7 2009-01-27 12:04 ./data/data2

�����

$ mkdir data-new

$ cd data-new

$ tar -xvf ../data.tar data/data2 ./ missing
tar: data/data2: Not found in archive

tar: Error exit delayed from previous errors

Exercises

C 11.3 [!2] Store a list of the files in your home directory in a file called content.
Create a tar archive from that file. Compare the original file and the archive.
What do you notice?

C 11.4 [2] Create three or four empty files and add them to the archive you
just created.

C 11.5 [2] Remove the original files and then unpack the content of the tar

archive.

C 11.6 [2] Why does GNU tar prophylactically remove the / at the beginning
of the path name, if the name of a file or directory to be archived is given as
an absolute path name? (Hint: Consider the

tar -cvf /tmp/etc-backup.tar /etc

command and imagine what will happen if etc-backup.tar (a) contains abso-
lute path names, and (b) is transferred to another computer and unpacked
there.)

Copyright © 2012 Linup Front GmbH

150 11 Archiving and Compressing Files

11.3 Compressing Files with gzip

The most common compression program for Linux is gzip by Jean-loup Gailly and
Mark Adler. It is used to compress single files (which, as mentioned earlier, may
be archives containing many files).

B The gzip program (short for “GNU zip”) was published in 1992 to avoid
problems with the compress program, which was the standard compression
tool on proprietary Unix versions. compress is based on the Lempel-Ziv-
Welch algorithm (LZW), which used to be covered by US patent 4,558,302.
This patent belonged to the Sperry (later Unisys) corporation and expired
on 20 June 2003. On the other hand, gzip uses the DEFLATE method by Phil
Katz [RFC1951], which is based on a non-patented precursor of LZW called
LZ77 as well as the Huffman encoding scheme and is free of patent claims.
Besides, it works better than LZW.

B gzip can decompress files compressed using compress, because the Unisys
patent only covered compression. You can recognise such files by the “.Z”
suffix of their names.

B gzip is not to be confused with PKZIP and similar Windows programs with
“ZIP” in their names. These programs can compress files and then archive
them immediately; gzip only takes care of the compression and leaves the
archiving to programs like tar or cpio.—gzip can unpack ZIP archives as long
as the archive contains exactly one file which has been packed using the
DEFLATE method.

gzip processes and replaces single files, appending the File*.gz suffix to their
names. This substitution happens independently of whether the resulting file is
actually smaller than the original. If several files are to be compressed into a single
archive, tar and gzip must be combined.

The most important options of gzip include:

-c writes the compressed file to standard output, instead of replacing the original;
the original remains unmodified

-d uncompresses the file (alternatively: gunzip works like gzip -d)

-l (“list”) displays important information about the compressed file, such as the
file name, original and packed size

-r (“recursive”) compresses files in subdirectories

-S ⟨suffix⟩ uses the specified suffix in place of .gz

-v outputs the name and compression factor of every file

-1 … -9 specifies a compression factor: -1 (or --fast) works most quickly but does
not compress as thoroughly, while -9 (or --best) results in the best compres-
sion at a slower speed; the default setting is -6.

The following command compresses the letter.tex file, stores the compressed
file as letter.tex.gz and deletes the original:

$ gzip letter.tex

The file can be unpacked using

$ gzip -d letter.tex

or

Copyright © 2012 Linup Front GmbH

11.4 Compressing Files with bzip2 151

$ gunzip letter.tex

Here the compressed file is saved as letter.tex.t instead of letter.tex.gz (-S .t),
and the compression rate achieved for the file is output (-v):

$ gzip -vS .t letter.tex

The -S option must also be specified on decompression, since “gzip -d” expects a
file with a .gz suffix:

$ gzip -dS .t letter.tex

If all .tex files are to be compressed in a file tex-all.tar.gz, the command is

$ tar -cvzf tex-all.tar.gz *.tex

Remember that tar does not delete the original files! This can be unpacked using

$ tar -xvzf tex-all.tar.gz

Exercises

C 11.7 [2] Compress the tar archive from Exercise 11.3 using maximum com-
pression.

C 11.8 [!3] Inspect the content of the compressed archive. Restore the original
tar archive.

C 11.9 [!2] How would you go about packing all of the contents of your home
directory into a gzip-compressed file?

11.4 Compressing Files with bzip2

bzip2 by Julian Seward is a compression program which is largely compatible to
gzip. However, it uses a different method which leads to higher compression ratios
but requires more time and memory to compress (to decompress, the difference
is not as significant).

B If you are desperate to know: bzip2 uses a “Burrows-Wheeler transforma-
tion” to encode frequently-occurring substrings in the input to sequences of
single characters. This intermediate result is sorted according to the “local
frequency” of individual characters and the sorted result, after being run-
length encoded, is encoded using the Huffman scheme. The Huffman code
is then written to a file in a very compact manner.

B What about bzip? bzip was a predecessor of bzip2 which used arithmetic en-
coding rather than Huffman encoding after the block transformation. How-
ever, the author decided to give arithmetic coding a wide berth due to the
various software patent issues that surround it.

Like gzip, bzip2 accepts one or more file names as parameters for compression.
The files are replaced by compressed versions, whose names end in .bz2.

The -c and -d options correspond to the eponymous options to gzip. However,
the “quality options” -1 to -9 work differently: They determine the block size used
during compression. The default value is -9, while -1 does not offer a significant
speed gain.

Copyright © 2012 Linup Front GmbH

152 11 Archiving and Compressing Files

B -9 uses a 900 KiB block size. This corresponds to a memory usage of approx-
imately 3.7 MiB to decompress (7.6 MiB to compress), which on contempo-
rary hardware should not present a problem. A further increase of the block
size does not appear to yield an appreciable advantage.—It is worth empha-
sising that the choice of block size on compression determines the amount of
memory necessary during decompression, which you should keep in mind
if you use your multi-Gibibyte PC to prepare .bz2 files for computers with
very little memory (toasters, set-top boxes, …). bzip2(1) explains this in more
detail.

By analogy to gzip and gunzip, bunzip2 is used to decompress files compressed
using bzip2. (This is really just another name for the bzip2 program: You can also
use “bzip2 -d” to decompress files.)

11.5 Archiving and Compressing Files Using zip and un-

zip

To exchange data with Windows computers or on the Internet, it often makes
sense to use the widespread ZIP file format (although many file archive programs
on Windows can also deal with .tar.gz today). On Linux, there are two separate
programs zip (to create archives) and unzip (to unpack archives).

B Depending on your distribution you may have to install these programs sep-
arately. On Debian GNU/Linux, for example, there are two distinct pack-
ages, zip and unzip.

The zip program combines archiving and compressing in a way that may bezip

familiar to you from programs like PKZIP. In the simplest case, it collects the files
passed on the command line:

$ zip test.zip file1 file2

adding: file1 (deflated 66%)

adding: file2 (deflated 62%)

$ _

(Here test.zip is the name of the resulting archive.)
You can use the -r option to tell zip to descend into subdirectories recursively:

$ zip -r test.zip ziptest

adding: ziptest/ (stored 0%)

adding: ziptest/testfile (deflated 62%)

adding: ziptest/file2 (deflated 62%)

adding: ziptest/file1 (deflated 66%)

With the -@ option, zip reads the names of the files to be archived from its standard
input:

$ find ziptest | zip -@ test

adding: ziptest/ (stored 0%)

adding: ziptest/testfile (deflated 62%)

adding: ziptest/file2 (deflated 62%)

adding: ziptest/file1 (deflated 66%)

(You may omit the .zip suffix from the name of the archive file.)

B zip knows about two methods of adding files to an archive. stored means that
the file was stored without compression, while deflated denotes compres-
sion (and the percentage states how much the file was compressed—“deflated

Copyright © 2012 Linup Front GmbH

11.5 Archiving and Compressing Files Using zip and unzip 153

62%”, for example, means that, inside the archive, the file is only 38% of its
original size). zip automatically chooses the more sensible approach, unless
you disable compression completely using the -0 option.

B If you invoke zip with an existing ZIP archive as its first parameter and do
not specify anything else, the files to be archived are added to the archive
on top of its existing content (existing files with the same names are over-
written). In this case zip behaves differently from tar and cpio (just so you
know). If you want a “clean” archive, you must remove the file first.

B Besides stupidly adding of files, zip supports several other modes of opera-
tion: The -u option “updates” the archive by adding files to the archive only
if the file mentioned on the command line is newer than a pre-existing file of
the same name in the archive (named files that are not in the archive yet are
added in any case). The -f option “freshens” the archive—files inside the
archive are overwritten with newer versions from the command line, but
only if they actually exist in the archive already (no completely new files
are added to the archive). The -d option considers the file names on the
command line as the names of files within the archive and deletes those.

B Newer versions of zip also support the -FS (“filesystem sync”) mode: This
mode “synchronises” an archive with the file system by doing essentially
what -u does, but also deleting files from the archive that have not been
named on the command line (or, in case of -r, are part of a directory being
searched). The advantage of this method compared to a full reconstruction
of the archive is that any preexisting unchanged files in the archive do not
need to be compressed again.

zip supports all sorts of options, and you can use “zip -h” to look at a list (or
“ -h2 to look at a more verbose list). The man page, zip(1), is also very informative.

You can unpack a ZIP archive again using unzip (this can also be a ZIP archive unzip

from a Windows machine). It is best to take a peek inside the archive first, us-
ing the -v option, to see what is in there—this may save you some hassle with
subdirectories (or their absence).

$ unzip -v test The .zip suffix may be omitted
Archive: test.zip

Length Method Size Cmpr Date Time CRC-32 Name

-------- ------ ------- ---- ---------- ----- -------- ----

0 Stored 0 0% 2012-02-29 09:29 00000000 ziptest/

16163 Defl:N 6191 62% 2012-02-29 09:46 0d9df6ad ziptest/testfile

18092 Defl:N 6811 62% 2012-02-29 09:01 4e46f4a1 ziptest/file2

35147 Defl:N 12119 66% 2012-02-29 09:01 6677f57c ziptest/file1

-------- ------- --- -------

69402 25121 64% 4 files

Calling unzip with the name of the archive as its single parameter suffices to
unpack the archive:

$ mv ziptest ziptest.orig

$ unzip test

Archive: test.zip

creating: ziptest/

inflating: ziptest/testfile

inflating: ziptest/file2

inflating: ziptest/file1

Use the -d option to unpack the archive in a different directory than the current
one. This directory is created first if necessary:

Copyright © 2012 Linup Front GmbH

154 11 Archiving and Compressing Files

$ unzip -d dir test

Archive: test.zip

creating: dir/ziptest/

inflating: dir/ziptest/testfile

inflating: dir/ziptest/file2

inflating: dir/ziptest/file1

If you name particular files on the command line, then only these files will be
unpacked:

$ rm -rf ziptest

$ unzip test ziptest/file1

Archive: test.zip

inflating: ziptest/file1

(In this case, the ziptest directory will also be created.)

B Alternatively, you can use the -x option to selectively exclude certain files
from being unpacked:

$ rm -rf ziptest

$ unzip test -x ziptest/file1

Archive: test.zip

creating: ziptest/

inflating: ziptest/testfile

inflating: ziptest/file2

You can also use shell search patterns to unpack certain files (or prevent them
from being unpacked):

$ rm -rf ziptest

$ unzip test "ziptest/f*"

Archive: test.zip

inflating: ziptest/file2

inflating: ziptest/file1

$ rm -rf ziptest

$ unzip test -x "*/t*"

Archive: test.zip

creating: ziptest/

inflating: ziptest/file2

inflating: ziptest/file1

(Note the quotes, which are used to hide the search patterns from the actual shell
so unzip gets to see them.) Unlike in the shell, the search patterns refer to the
complete file names (including any “/”).

As is to be expected, unzip also supports various other options. Look at the
program’s help information using “unzip -h” or “unzip -hh”, or read unzip(1).

Exercises

C 11.10 [!2] Create some files inside your home directory and store them in a
zip archive. Look at the content of the archive using “unzip -v”. Unpack the
archive inside the /tmp directory.

C 11.11 [!1] What happens if a file that you are about to unpack using unzip

already exists in the file system?

Copyright © 2012 Linup Front GmbH

11.5 Bibliography 155

C 11.12 [2] A ZIP archive files.zip contains two subdirectories a and b, which
in turn contain a mixture of files with various suffixes (e. g., .c, .txt, and
.dat). Give a unzip command to extract the complete content of a except for
the .txt files (in one step).

Commands in this Chapter

bunzip2 File decompression program for .bz2 files bzip2(1) 152
bzip2 File compression program bzip2(1) 147
gzip File compression utility gzip(1) 147
split Splits a file into pieces up to a given maximum size split(1) 147
tar File archive manager tar(1) 146
unzip Decompression software for (Windows-style) ZIP archives

unzip(1) 153
zip Archival and compression software like PKZIP zip(1) 152

Summary

• “Archival” collects many files into one large file. “Compression” reversibly
determines a more compact representation for a file.

• tar is the most common archival program on Linux.
• gzip is a program for compressing and decompressing arbitrary files. It can

be used together with tar.
• bzip2 is another compression program. It can achieve higher compression

ratios than gzip, but also needs more time and memory.
• The zip and unzip programs are available to process ZIP archives as used (for

example) by the PKZIP program on Windows.

Bibliography

RFC1951 P. Deutsch. “DEFLATE Compressed Data Format Specification version
1.3”, May 1996. http://www.ietf.org/rfc/rfc1951.txt

Copyright © 2012 Linup Front GmbH

12
Introduction to System
Administration

Contents

12.1 System Administration Basics 158
12.2 System Configuration 159
12.3 Processes . 160
12.4 Package Management 165

Goals

• Having insight into the role of a system administrator
• Understanding the basics of the operating system kernel and processes
• Knowing about package management concepts

Prerequisites

• Basic use of the shell (Chapter 4)
• Knowledge of Linux file system structure (Chapter 10)

lxes-admin.tex ()

158 12 Introduction to System Administration

12.1 System Administration Basics

What does a system administrator do? Configure computers, install software (and
occasionally remove it), connect peripherals and make them usable, make back-
ups (and occasionally restore them), add and remove user accounts, help users
with problems, … it is an impressive list of tasks. In the old days of home comput-
ers, the user of a computer was also the administrator, and this idea has been kept
going for a long time in systems like Windows (even once Windows had acquired
the notion of different users, it was common to have to use the “Administrator”
account, simply because various important programs assumed the correspond-
ing privileges were available). Unix—the system that inspired Linux—was set up
from its very beginnings to support several users, and hence the separation be-
tween an “administrator” with special privileges and “normal” users is rooted far
more deeply in the system than with operating systems from the home computer
tradition.

The LPI’s Linux Essentials exam does not emphasise system administration,
but you should have at least a general overview—perhaps not to be the sys-
tem administrator, but to achieve a better understanding of what your sys-
tem administrator does for you, or at some point become a system adminis-
trator. Knowledge important for system administrators is part of the LPI’s
LPIC certification track, particularly LPIC-2 and LPIC-3.

In this chapter we shall mention several topics that have less to do with the
immediate use of a Linux computer, but include, for example, how to get a picture
of what is running on the computer (cue “Why is my computer so slow??”), and
how software is managed on the computer. We’re really after the big picture here,
not details.

On a Linux system, the system administrator has access to a special user ac-
count, root. This account is exempt from the access checks (Chapter 14) whichroot

are otherwise performed, and can therefore access all files on the system. This
is necessary, for example, to install new software—“normal” users may read and
execute program files from system directories but, in order to prevent manipula-
tions to the detriment of other users, not write them. The administrator must also
be able to read any user’s files in order to create backup copies (and to write them
back if a backup needs to be restored).

A It is obvious that the ability to write all files on the system includes the
opportunity to damage the system seriously. If you are logged in as root,
Linux does not prevent you from using a command like

rm -rf /

to destroy the whole file system (and there are lots of more subtle ways to
do damage). Hence you should avail yourself of root privileges only if you
actually need them. Surfing the web or reading mail while logged in as root

is RIGHT OUT.

A If you can read all files on thesystem as root, you might succumb to the temp-
tation of, say, regularly inspecting your boss’s (or spouse’s) e-mail. DON’T
DO IT. It may be distrustful (at least in the case of your spouse) and/or ille-
gal (at least in the case of your boss) and it can get you into all sorts of trouble
that are liable to spoil your fun with Linux and system administration, to
say nothing of domestic or workplace peace. There is nothing wrong with
taking an isolated brief peek, in consultation with the people involved, into
a mailbox file in order to diagnose or repair a problem—but do not let it
become a habit.

B When in doubt, think of Peter Parker, a. k. a. Spider-Man: “With great power
comes great responsibility.”

Copyright © 2012 Linup Front GmbH

12.2 System Configuration 159

You should avoid logging in as root directly (especially on a graphical screen).
Instead, use the su program, in a terminal session started as a normal user, to
obtain a shell running as root:

$ /bin/su -

Password: secret Password for root

_

After exiting the root shell (using exit or Ctrl + d) you end up back in the shell
where you originally invoked su.

Some distributions try to get by without a separate root account. Ubuntu, for
example, allows the first user created during the system’s installation to execute
single commands with root privileges by putting sudo in front, as in sudo

$ sudo less /var/log/syslog Peruse system log

(that user can extend this privilege to other users if required). For larger tasks, it
is possible to use “sudo -i” to obtain a shell running with administrator privileges.

B Most Linux distributions signal that a shell is running with root privileges
by outputting a prompt ending in “#”. If something else appears—typically
“$” or “>”—, the shell is unprivileged.

Exercises

C 12.1 [2] Try su. Why does the example use an absolute path name to invoke
the program?

C 12.2 [2] You need to know the root password for su. sudo usually asks you
for your own password. Which is better?

12.2 System Configuration

While other systems bury their configuration details in databases that can only be
modified through special tools and are susceptible to “bit rot” (cue Windows reg-
istry), system-wide configuration entries on Linux are usually contained in text
files within the /etc directory (a few examples can be seen in Section 10.3), where
the system administrator can use a text editor of their choice to modify or extend
them. For example, a new user can be added by adding the relevant parameters
like the user name, numerical user ID, or home directory name to the /etc/passwd

file. A new hard disk may be configured by appending a line to /etc/fstab speci-
fying the name of the device file and the directory where the disk is supposed to
appear.

B A Linux system is a complex system of software components of widely
differing provenance (some of which are older than Linux itself). From
this historically grown setup it follows that the different configuration files
within /etc are structured in a very non-uniform fashion—some are organ-
ised by lines, others contain sections delimited by braces, even others are
XML files or even executable shell scripts. This is certainly a nuisance to ad-
ministrators who need to deal with all these different formats, but it is also
not straightforward to change, since all sorts of software packages would
need to be modified.

B However, there are some very widespread conventions: For example, most
configuration files allow comments in lines starting with “#”.

While the idea of managing the system configuration in separate text files may
seem antediluvial at first, it does have some tangible advantages:

Copyright © 2012 Linup Front GmbH

160 12 Introduction to System Administration

• It is usually not possible to damage the system as a whole through mistakes
in the configuration of a single software package or service. (Of course there
are a few configuration files which are so essential for the system’s function-
ality that errors in them could, for example, render the system unbootable.
But these are a small minority at best.)

• Most configuration files allow comments. This makes it possible to doc-
ument the details of individual configuration settings directly where they
occur, and thus makes collaboration in a team easier or avoids accidents due
to one’s own forgetfulness. It is certainly a lot better than having to remem-
ber that there is an entry 𝑋 in menu 𝑌 that lets you open a dialog where on
tab 𝑍 there is a box that absolutely needs to be checked because otherwise
nothing is going to work. (Pieces of paper containing this type of wisdom
have the unfortunate tendency of disappearing when they are needed most
urgently:)

• You can “check in” text files to a revision control system such as Git or Mer-
curial and thereby not just document big changes spanning various files, but
also undo them in an orderly manner if required. This also makes it conve-
nient to store the complete configuration of a computer on a central server,
such that it is immediately available if the computer needs to be reinstalled
for whatever reason—say, after a catastrophic hardware fault. In data cen-
ters this is a very decisive advantage, especially if a detailed “auditing” of
all configuration changes is desired.

• Text files allow the convenient configuration of whole computer networks
by distributing configuration files from a central server to the computers to
be managed. Systems such as “Puppet” or “Salt” make it possible to use
“templates” for configuration files that are instantiated using suitable de-
tails for the target computer when they are distributed, which can totally
obviate the manual configuration of individual computers (the “sneaker
net”). This, too, makes the management of big networks easier but is also a
definite help with smaller installations.

Exercises

C 12.3 [3] Snoop around in /etc. Many files there have manual pages—try
something like “man fstab”. Are there files in /etc that you cannot read as a
normal user, and why?

12.3 Processes

A program that is being executed is called a “process”. Besides the program code
itself (in the machine language of the processor in question), a process includes
working storage for the data as well as administrative information like the files
currently in use, an environment (for the environment variables), a current direc-
tory, and a process number or “PID” identifying the process uniquely within thePID

system. The operating system kernel is in charge of creating processes, assigning
them CPU time and storage, and cleaning up after them when they have exited.
Processes can call into the operating system kernel to access files, devices, or the
network.

B New processes come into being when existing processes—not unlike bac-
teria or other low forms of life—split up into two almost identical copies
(“almost identical”, because one process is considered the “parent” and the
other the “child”). In addition, a process can arrange to execute a different
program: For example, if you invoke the ls command in the shell, the shell
creates a child process which is at first also executing the shell’s program

Copyright © 2012 Linup Front GmbH

12.3 Processes 161

code. This code takes care (among other things) of arranging a possible
input/output redirection and then replaces itself with the /bin/ls program
file. At the end of the ls program, the child process ends, and the shell asks
you for the next command.

B The first process with the PID of 1 is created by the operating system kernel
during boot. According to the convention this is a program called /sbin/

init, and it is also called the “init process”. The init process is responsible
for booting the system and, e. g., starting additional processes for system
services running in the background.

ps You can use the “ps” command to obtain information about the processes
running on the system. In the simplest case, ps shows you all processes running
on your current terminal (or, nowadays, the current terminal window on your
graphical screen):

$ ps

PID TTY STAT TIME COMMAND

997 pts/8 S 0:00 -bash

1005 pts/8 R 0:00 ps

$ _

The PID and COMMAND columns speak for themselves. TTY gives the name of the ter-
minal (“pts/something” usually refers to a terminal window), TIME the CPU time
used by the processes so far, and STAT the “process state”.

B A process on Linux is always in one of a number of states, namely process state

Runnable (R) The process may be assigned CPU time.
Sleeping (S) The process is waiting for an event, typically input or output—

a key press or data from disk.
In deep (uninterruptible) sleep (D) The process is waiting for an event and

cannot be disturbed. Processes should not remain in this state for too
long because they can only be removed by booting the system. If that
happens it is usually due to some error.

Temporarily stopped (T) The process was temporarily stopped by its owner
or an administrator, but can continue running later on.

Zombie (Z) The process has really finished, but its exit code has not yet been
picked up by its parent. This means the process cannot “die” but re-
mains undead within the system. Unlike in real life, zombies are not
really a problem because they do not take up resources other than a slot
in the process table. If your system is infested with a horde of zombies,
this indicates a problem with the program that created the processes
in the first place—terminating that program should make the zombies
disappear.

Use parameters to control which information ps provides. For example, you
could enter a process number to find out about a particular process:

$ ps 1

PID TTY STAT TIME COMMAND

1 ? Ss 0:00 init [2]

The l option gives you more detailed information about a process:

$ ps l $$

F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

0 1000 3542 3491 20 0 21152 2288 - Ss pts/8 0:00 /bin/bash

Copyright © 2012 Linup Front GmbH

162 12 Introduction to System Administration

(“$$” denotes the “current process”, the shell).

B UID is the numerical ID of the owner of the process (see Chapter 13), PPID

the process ID of the process’s “parent”. PRI is its priority—the higher the
number, the lower the priority (!)—, VSZ its size in working memory (in KiB),
and RSS its current size in RAM (also in KiB).

B VSZ and RSS are not identical, since part of the process may have been moved
to disk. After all, you can enlarge the available working memory on a Linux
computer by adding swap space on a disk partition or file.

The ps command supports a multitude of options controlling the selection of
processes considered and the type and volume of information output for each
process. Read ps(1).

B ps and similar programs obtain their information from the proc file system,
which is usually mounted on /proc and is made available by the operating
system kernel. The “files” within this directory contain up-to-date infor-
mation about processes and other properties of the system. (See also Sec-
tion 10.3.)

free The free command provides information about system memory:

$ free

total used free shared buffers cached

Mem: 3921956 1932696 1989260 0 84964 694640

-/+ buffers/cache: 1153092 2768864

Swap: 8388604 0 8388604

The “Mem:” line tells you that this computer has about 4 GiB of RAM (under
“total”; the operating system kernel takes up some memory that does not ap-
pear here) which is about half full (see “used” and “free”). The operating system
uses about 700 MiB to store disk data (the “buffers” and “cached” columns), and
the second line tells you how that impacts the free and used memory. The third
line (“Swap:”) describes swap space utilisation (out of 8 GiB, on this machine).

B The “shared” column is always zero on modern Linux machines and can
therefore be ignored.

B free, too, supports a number of options, for example to produce a friendlier
output format:

$ free --human ‘‘-h’’ would do, too
total used free shared buffers cached

Mem: 3,7G 1,9G 1,8G 0B 84M 678M

-/+ buffers/cache: 1,2G 2,5G

Swap: 8,0G 0B 8,0G

Here free uses the “M” and “G” units to refer to the computer-friendly
mebibyte and gibibyte. The --si option switches to powers of ten (mega-
and gigabyte).

top Finally, the “top” command is like a combination of ps and free with ongoing
updates. It displays a full screen of information including system and process
information: Figure 12.1 shows an example:

Copyright © 2012 Linup Front GmbH

12.3 Processes 163

Figure 12.1: The top program

Copyright © 2012 Linup Front GmbH

164 12 Introduction to System Administration

• In the top part of the output, the first line shows the current wallclock time
and the “uptime”, i. e., the amount of time elapsed since the system was
booted (here, four days, fourteen hours, and change) and the number of
logged-in users (the “11” here shouldn’t be taken too seriously; every ses-
sion in a terminal window counts as a user). On the right there are three
numbers, the so-called load averages, which describe the system load.

B The load averages specify the number of runnable processes (state R),
averaged over the last minute, the last five minutes, and the last fifteen
minutes respectively. The utility of these values should not be over-
estimated (!); they don’t really tell you all that much. If the value for
the last minute is high and the one for the last 15 minutes low, then
your system has suddenly got a lot more to do; if the value for the last
minute is low but that for the last 15 minutes is high, your system used
to have a lot to do but that is over now.

B If the load averages are constantly lower than the number of processor
cores in your system, this means that you have unnecessarily overspent
on an expensive processor. On an eight-core system, for example, val-
ues around 8 (which traditionally would have sent cold shivers down
a system administrator’s spine) are completely unremarkable; values
that are a lot lower than 8 over prolonged periods of time are pathetic.

• The second line gives the number of processes and how they are distributed
over the various process states.

• The third line contains percentages according to the type of CPU utilisation:
“us” is the execution of code outside and “sy that of code inside the operat-
ing system kernel. “ni” is code outside the operating system kernel whose
priority was deliberately reduced by a user, and “id” is doing nothing. “wa”
is waiting for I/O, and the other three columns are not that interesting.

• The two following lines basically correspond to the output of free.

• The lower part of the screen is a process list similar to that of “ps l”. Like
the upper part, it is updated every few seconds and, by default, is sorted
according to the percentage of CPU time the processes in the list are using
(the process that the system spends most time on is leading the list).

B If you press the m key, the list is sorted according to memory use—
the most obese process is on top. With p , you can go back to the
CPU-time list.

You can use the h key to display a help page inside top. The top(1) man page
explains the output and the possible key combinations in detail, and shows you
how to adapt the content of the process list to your requirements.

Exercises

C 12.4 [1] With the ps option, ax, you can display all processes on the system.
Look at the list. Which processes do you recognise?

C 12.5 [2] Start a long-running process inside a shell session (something like
“sleep 120” should do). In another session, invoke “ps ax” and try to locate
the process in the output. (Hint: grep is your friend.)

C 12.6 [!2] Use top to find out which processes are currently using the most
CPU time. Which processes are using the most memory?

Copyright © 2012 Linup Front GmbH

12.4 Package Management 165

12.4 Package Management

Contemporary Linux distributions normally consist of a multitude (typically
thousands) of “packages”, each containing everything necessary for a certain
part of the system’s functionality: executable programs, libraries, documenta-
tion, … When initially configuring a Linux computer, you as the administrator
can specify which packages should be installed on the computer, and of course
you can always add arbitrary packages from your distribution later, or remove
unused ones.

B The details of how functionality is split into packages depends on the distri-
bution. With libraries, it is usual to distinguish between a “run-time pack-
age” and a “development package”. The run-time package contains the files
that must be installed so other programs can use the library (like the actual
dynamically loadable library in a .so file). You need to install the develop-
ment package only if you intend to compile new or existing programs using
the library—this contains the information the C compiler needs to use the
library (“include files”), a statically linkable library for debugging, or docu-
mentation about the library’s content. If the documentation is large, it may
be separated into yet another package.

B For example, here is the package split for the rsvg library (which deals with
SVG-format graphics) according to Debian GNU/Linux 6.0 (“Squeeze”):

librsvg2-2 The actual (run-time) library
librsvg2-dev Development package
librsvg2-bin Command-line programs
librsvg2-dbg Debugging information
librsvg2-doc Documentation
librsvg2-common More command-line programs
python-rsvg Python language binding
libimage-librsvg-perl Perl language binding

On every Linux computer1 there is a “package database” containing informa- package database

tion about which packages the computer is aware of and which of those are cur-
rently installed. You can periodically synchronise the package database with your
distribution’s “repositories”, or servers containing packages, and thus find out
which of the packages on your computer are out of date because the distribution
offers newer versions. The package management system then usually offers you
the opportunity to selectively update the packages in question.

B How well that works in practice depends (once again) on your distribution.
In particular, the issue may be more complicated than it seems: The newer
version of a package could, for example, require that a library (available as
its own package) must be installed in a newer version, and that can lead to
problems if another installed program absolutely requires the old version
of the library. Sometimes it is possible that a package cannot be updated
without making drastic changes elsewhere in the system. Good package
management systems detect such situations and warn you as the adminis-
trator and/or give you the opportunity to intervene.

As pointed out in Section 2.4.7, the major Linux distributions use either of two
different package management systems, both of which come with their own tools
and their own format for package files—the package management system of De-
bian GNU/Linux and its derivatives, and the RPM package manager as used by
Red Hat, SUSE etc. In principle, both solve the same problem, but differ in de-
tails such as the commands used for package management. For example, on an

1Those using one of the major distributions, at any rate—there are a few distributions that seem to
get by without a package management system, but these are for nerds.

Copyright © 2012 Linup Front GmbH

166 12 Introduction to System Administration

RPM-based system such as RHEL, Fedora, or openSUSE you can display a list of
all installed packages using the

$ rpm --query --all ‘‘-qa’’ would do

command, while a Debian-based system would require the

$ dpkg --list ‘‘-l’’ would do

command instead.

B The package databases themselves are usually found below /var/lib; on
Debian-like systems within /var/lib/dpkg (/var/cache/apt contains the tables
of contents of repository servers as well as any downloaded package files),
and within /var/lib/rpm on RPM-based systems.

Today, programs such as dpkg and rpm form the “foundation” of a package man-
agement system. Administrators prefer more convenient tools that build on these
base programs and include, for example, easy access to package repositories and
the automatic resolution of dependencies between packages. In the Debian world,
these include “Aptitude” and “Synaptic”, while, on the RPM side of things, Red
Hat relies on a program called YUM and SUSE on one called “Zypper” (even
though package management has also been integrated into the general admin-
istration tool, YaST).

B Some of these tools are even independent of the underlying package man-
agement system. “PackageKit”, for example, can not only use either Debian
or RPM package management, but also, under controlled circumstances, al-
low normal users without administrator privileges to install or update pack-
ages.

Exercises

C 12.7 [2] How many packages are installed on your system? Use the rpm or
dpkg invocation shown above and count the lines in the output. (Caution:
“dpkg --list” also displays packages that used to be installed but have been
removed or superseded by newer versions. Count only those lines in the
output that begin with “ii”.)

Commands in this Chapter

dpkg Debian GNU/Linux package management tool dpkg(8) 166
free Displays main memory and swap space usage free(1) 162
ps Outputs process status information ps(1) 161
rpm Package management tool used by various Linux distributions (Red Hat,

SUSE, …) rpm(8) 166
su Starts a shell using a different user’s identity su(1) 158
sudo Allows normal users to execute certain commands with administrator

privileges sudo(8) 159
top Screen-oriented tool for process monitoring and control top(1) 162

Copyright © 2012 Linup Front GmbH

12.4 Package Management 167

Summary

• Linux distinguishes between “normal” users and the system administrator,
root. root is exempt from the usual privilege checks.

• As a normal user, you can obtain temporary administrator privileges by
means of su or sudo.

• A Linux computer’s configuration is contained in text files within the /etc

directory.
• Processes are programs that are being executed.
• Commands such as ps and top allow you insight into the current system

state.
• The important Linux distributions use either the package management sys-

tem of GNU/Linux or the RPM system originally developed by Red Hat.
• Based on foundation tools, most distributions offer convenient software for

managing, installing, and removing software packages including depen-
dencies.

Copyright © 2012 Linup Front GmbH

13
User Administration

Contents

13.1 Basics . 170
13.1.1 Why Users? . 170
13.1.2 Users and Groups 171
13.1.3 People and Pseudo-Users 173

13.2 User and Group Information 173
13.2.1 The /etc/passwd File 173
13.2.2 The /etc/shadow File 176
13.2.3 The /etc/group File 178
13.2.4 The /etc/gshadow File 179

13.3 Managing User Accounts and Group Information 180
13.3.1 Creating User Accounts 180
13.3.2 The passwd Command 182
13.3.3 Deleting User Accounts 183
13.3.4 Changing User Accounts and Group Assignment 184
13.3.5 Changing User Information Directly—vipw 184
13.3.6 Creating, Changing and Deleting Groups 184

Goals

• Understanding the user and group concepts of Linux
• Knowing how user and group information is stored on Linux
• Being able to use the user and group administration commands

Prerequisites

• Knowledge about handling configuration files

adm1-benutzer.tex ()

170 13 User Administration

13.1 Basics

13.1.1 Why Users?

Computers used to be large and expensive, but today an office workplace without
its own PC (“personal computer”) is nearly inconceivable, and a computer is likely
to be encountered in most domestic “dens” as well. And while it may be sufficient
for a family to agree that Dad, Mom and the kids will put their files into different
directories, this will no longer do in companies or universities—once shared disk
space or other facilities are provided by central servers accessible to many users,
the computer system must be able to distinguish between different users and to
assign different access rights to them. After all, Ms Jones from the Development
Division has as little business looking at the company’s payroll data as Mr Smith
from Human Resources has accessing the detailed plans for next year’s products.
And a measure of privacy may be desired even at home—the Christmas present
list or teenage daughter’s diary (erstwhile fitted with a lock) should not be open
to prying eyes as a matter of course.

B We shall be discounting the fact that teenage daughter’s diary may be visible
to the entire world on Facebook (or some such); and even if that is the case,
the entire world should surely not be allowed to write to teenage daughter’s
dairy. (Which is why even Facebook supports the notion of different users.)

The second reason for distinguishing between different users follows from the
fact that various aspects of the system should not be visible, much less change-
able, without special privileges. Therefore Linux manages a separate user iden-
tity (root) for the system administrator, which makes it possible to keep informa-
tion such as users’ passwords hidden from “common” users. The bane of older
Windows systems—programs obtained by e-mail or indiscriminate web surfing
that then wreak havoc on the entire system—will not plague you on Linux, since
anything you can execute as a common user will not be in a position to wreak
system-wide havoc.

A Unfortunately this is not entirely correct: Every now and then a bug comes
to light that enables a “normal user” to do things otherwise restricted to
administrators. This sort of error is extremely nasty and usually corrected
very quickly after having been found, but there is a considerable chance that
such a bug has remained undetected in the system for an extended period
of time. Therefore, on Linux (as on all other operating systems) you should
strive to run the most current version of critical system parts like the kernel
that your distributor supports.

A Even the fact that Linux safeguards the system configuration from unau-
thorised access by normal users should not entice you to shut down your
brain. We do give you some advice (such as not to log in to the graphical
user interface as root), but you should keep thinking along. E-mail messages
asking you to view web site 𝑋 and enter your credit card number and PIN
there can reach you even on Linux, and you should disregard them in the
same way as everywhere else.

Linux distinguishes between different users by means of different user ac-user accounts

counts. The common distributions typically create two user accounts during
installation, namely root for administrative tasks and another account for a “nor-
mal” user. You (as the administrator) may add more accounts later, or, on a client
PC in a larger network, they may show up automatically from a user account
database stored elsewhere.

B Linux distinguishes between user accounts, not users. For example, no one
keeps you from using a separate user account for reading e-mail and surfing
the web, if you want to be 100% sure that things you download from the

Copyright © 2012 Linup Front GmbH

13.1 Basics 171

Net have no access to your important data (which might otherwise happen
in spite of the user/administrator divide). With a little cunning you can
even display a browser and e-mail program running under your “surfing
account” among your “normal” programs1.

Under Linux, every user account is assigned a unique number, the so-called
user ID (or UID, for short). Every user account also features a textual user name UID

user name(such as root or joe) which is easier to remember for humans. In most places where
it counts—e. g., when logging in, or in a list of files and their owners—Linux will
use the textual name whenever possible.

B The Linux kernel does not know anything about textual user names; process
data and the ownership data in the filesystem use the UID exclusively. This
may lead to difficulties if a user is deleted while he still owns files on the
system, and the UID is reassigned to a different user. That user “inherits”
the previous UID owner’s files.

B There is no technical problem with assigning the same (numerical) UID to
different user names. These users have equal access to all files owned by that
UID, but every user can have his own password. You should not actually
use this (or if you do, use it only with great circumspection).

13.1.2 Users and Groups

To work with a Linux computer you need to log in first. This allows the system
to recognise you and to assign you the correct access rights (of which more later).
Everything you do during your session (from logging in to logging out) happens
under your user account. In addition, every user has a home directory, where home directory

only they can store and manage their own files, and where other users often have
no read permission and very emphatically no write permission. (Only the system
administrator—root—may read and write all files.)

A Depending on which Linux distribution you use (cue: Ubuntu) it may
be possible that you do not have to log into the system explicitly. This
is because the computer “knows” that it will usually be you and simply
assumes that this is going to be the case. You are trading security for con-
venience; this particular deal probably makes sense only where you can
stipulate with reasonable certainty that nobody except you will switch on
your computer—and hence should be restricted by rights to the computer
in your single-person household without a cleaner. We told you so.

Several users who want to share access to certain system resources or files can
form a group. Linux identifies group members either fixedly by name or tran- group

siently by a login procedure similar to that for users. Groups have no “home di-
rectories” like users do, but as the administrator you can of course create arbitrary
directories meant for certain groups and having appropriate access rights.

Groups, too, are identified internally using numerical identifiers (“group IDs”
or GIDs).

B Group names relate to GIDs as user names to UIDs: The Linux kernel only
knows about the former and stores only the former in process data or the
file system.

Every user belongs to a primary group and possibly several secondary or addi-
tional groups. In a corporate setting it would, for example, be possible to introduce
project-specific groups and to assign the people collaborating on those projects
to the appropriate group in order to allow them to manage common data in a
directory only accessible to group members.

1Which of course is slightly more dangerous again, since programs runninig on the same screen
can communicate with one another

Copyright © 2012 Linup Front GmbH

172 13 User Administration

For the purposes of access control, all groups carry equivalent weight—every
user always enjoys all rights deriving from all the groups that he is a member of.
The only difference between the primary and secondary groups is that files newly
created by a user are usually2 assigned to his primary group.

B Up to (and including) version 2.4 of the Linux kernel, a user could be a mem-
ber of at most 32 additional groups; since Linux 2.6 the number of secondary
groups is unlimited.

You can find out a user account’s UID, the primary and secondary groups and
the corresponding GIDs by means of the id program:

$ id

uid=1000(joe) gid=1000(joe) groups=24(cdrom),29(audio),44(video),�

� 1000(joe)

$ id root

uid=0(root) gid=0(root) groups=0(root)

B With the options -u, -g, and -G, id lets itself be persuaded to output just the
account’s UID, the GID of the primary group, or the GIDs of the secondary
groups. (These options cannot be combined.) With the additional option -n

you get names instead of numbers:

$ id -G

1000 24 29 44

$ id -Gn

joe cdrom audio video

B The groups command yields the same result as the ”‘id -Gn”’ command.

You can use the last command to find who logged into your computer andlast

when (and, in the case of logins via the network, from where):

$ last

joe pts/1 pcjoe.example.c Wed Feb 29 10:51 still logged in

bigboss pts/0 pc01.example.c Wed Feb 29 08:44 still logged in

joe pts/2 pcjoe.example.c Wed Feb 29 01:17 - 08:44 (07:27)

sue pts/0 :0 Tue Feb 28 17:28 - 18:11 (00:43)

�����

reboot system boot 3.2.0-1-amd64 Fri Feb 3 17:43 - 13:25 (4+19:42)

�����

For network-based sessions, the third column specifies the name of the ssh client
computer. “:0” denotes the graphical screen (the first X server, to be exact—there
might be more than one).

B Do also note the reboot entry, which tells you that the computer was started.
The third column contains the version number of the Linux operating sys-
tem kernel as provided by “uname -r”.

With a user name, last provides information about a particular user:

$ last

joe pts/1 pcjoe.example.c Wed Feb 29 10:51 still logged in

joe pts/2 pcjoe.example.c Wed Feb 29 01:17 - 08:44 (07:27)

�����

2The exception occurs where the owner of a directory has decreed that new files and subdirectories
within this directory are to be assigned to the same group as the directory itself. We mention this
strictly for completeness.

Copyright © 2012 Linup Front GmbH

13.2 User and Group Information 173

B You might be bothered (and rightfully so!) by the fact that this somewhat
sensitive information is apparently made available on a casual basis to arbi-
trary system users. If you (as the administrator) want to protect your users’
privacy somewhat better than you Linux distribution does by default, you
can use the

chmod o-r /var/log/wtmp

command to remove general read permissions from the file that last con-
sults for the telltale data. Users without administrator privileges then get to
see something like

$ last

last: /var/log/wtmp: Permission denied

13.1.3 People and Pseudo-Users

Besides “natural” persons—the system’s human users—the user and group con-
cept is also used to allocate access rights to certain parts of the system. This means
that, in addition to the personal accounts of the “real” users like you, there are fur-
ther accounts that do not correspond to actual human users but are assigned to pseudo-users

administrative functions internally. They define functional “roles” with their own
accounts and groups.

After installing Linux, you will find several such pseudo-users and groups in
the /etc/passwd and /etc/group files. The most important role is that of the root user
(which you know) and its eponymous group. The UID and GID of root are 0 (zero).

B root’s privileges are tied to UID 0; GID 0 does not confer any additional
access privileges.

Further pseudo-users belong to certain software systems (e. g., news for Usenet
news using INN, or postfix for the Postfix mail server) or certain components or
devices (such as printers, tape or floppy drives). You can access these accounts, if
necessary, like other user accounts via the su command. These pseudo-users are pseudo-users for privileges

helpful as file or directory owners, in order to fit the access rights tied to file own-
ership to special requirements without having to use the root account. The same
appkies to groups; the members of the disk group, for example, have block-level
access to the system’s disks.

Exercises

C 13.1 [1] How does the operating system kernel differentiate between various
users and groups?

C 13.2 [2] What happens if a UID is assigned to two different user names? Is
that allowed?

C 13.3 [1] What is a pseudo-user? Give examples!

C 13.4 [2] (On the second reading.) Is it acceptable to assign a user to group
disk who you would not want to trust with the root password? Why (not)?

13.2 User and Group Information

13.2.1 The /etc/passwd File

The /etc/passwd file is the system user database. There is an entry in this file for
every user on the system—a line consisting of attributes like the Linux user name,

Copyright © 2012 Linup Front GmbH

174 13 User Administration

“real” name, etc. After the system is first installed, the file contains entries for most
pseudo-users.

The entries in /etc/passwd have the following format:

⟨user name⟩:⟨password⟩:⟨UID⟩:⟨GID⟩:⟨GECOS⟩:⟨home directory⟩:⟨shell⟩

⟨user name⟩ This name should consist of lowercase letters and digits; the first char-
acter should be a letter. Unix systems often consider only the first eight
characters—Linux does not have this limitation but in heterogeneous net-
works you should take it into account.

A Resist the temptation to use umlauts, punctuation and similar special
characters in user names, even if the system lets you do so—not all
tools that create new user accounts are picky, and you could of course
edit /etc/passwd by hand. What seems to work splendidly at first glance
may lead to problems elsewhere later.

B You should also stay away from user names consisting of only upper-
case letters or only digits. The former may give their owners trouble
logging in (see Exercise 13.6), the latter can lead to confusion, espe-
cially if the numerical user name does not equal the account’s numeri-
cal UID. Commands such as ”‘ls -l”’ will display the UID if there is no
corresponding entry for it in /etc/passwd, and it is not exactly straight-
forward to tell UIDs from purely numerical user names in ls output.

⟨password⟩ Traditionally, this field contains the user’s encrypted password. Today,
most Linux distributions use “shadow passwords”; instead of storing the
password in the publically readable /etc/passwd file, it is stored in /etc/shadow

which can only be accessed by the administrator and some privileged pro-
grams. In /etc/passwd, a “x” calls attention to this circumstance. Every user
can avail himself of the passwd program to change his password.

⟨UID⟩ The numerical user identifier—a number between 0 and 232 − 1. By con-
vention, UIDs from 0 to 99 (inclusive) are reserved for the system, UIDs
from 100 to 499 are for use by software packages if they need pseudo-user
accounts. With most popular distributions, “real” users’ UIDs start from
500 (or 1000).
Precisely because the system differentiates between users not by name but
by UID, the kernel treats two accounts as completely identical if they con-
tain different user names but the same UID—at least as far as the access
privileges are concerned. Commands that display a user name (e. g., ”‘ls
-l”’ or id) show the one used when the user logged in.

⟨GID⟩ The GID of the user’s primary group after logging in.primary group

The Novell/SUSE distributions (among others) assign a single group
such as users as the shared primary group of all users. This method is
quite established as well as easy to understand.

Many distributions, such as those by Red Hat or Debian GNU/Linux,
create a new group whenever a new account is created, with the GID
equalling the account’s UID. The idea behind this is to allow more
sophisticated assignments of rights than with the approach that puts
all users into the same group users. Consider the following situation:
Jim (user name jim) is the personal assistant of CEO Sue (user name
sue). In this capacity he sometimes needs to access files stored inside
Sue’s home directory that other users should not be able to get at. The
method used by Red Hat, Debian & co., “one group per user”, makes it
straightforward to put user jim into group sue and to arrange for Sue’s

Copyright © 2012 Linup Front GmbH

13.2 User and Group Information 175

files to be readable for all group members (the default case) but not oth-
ers. With the “one group for everyone” approach it would have been
necessary to introduce a new group completely from scratch, and to
reconfigure the jim and sue accounts accordingly.

By virtue of the assignment in /etc/passwd, every user must be a member of
at least one group.

B The user’s secondary groups (if applicable) are determined from en-
tries in the /etc/group file.

⟨GECOS⟩ This is the comment field, also known as the “GECOS field”.

B GECOS stands for “General Electric Comprehensive Operating Sys-
tem” and has nothing whatever to do with Linux, except that in the
early days of Unix this field was added to /etc/passwd in order to keep
compatibility data for a GECOS remote job entry service.

This field contains various bits of information about the user, in particular
his “real” name and optional data such as the office number or telephone
number. This information is used by programs such as mail or finger. The
full name is often included in the sender’s address by news and mail soft-
ware.

B Theoretically there is a program called chfn that lets you (as a user)
change the content of your GECOS field. Whether that works in any
particular case is a different question, since at least in a corporate set-
ting one does not necessarily want to allow people to change their
names at a whim.

⟨home directory⟩ This directory is that user’s personal area for storing his own files.
A newly created home directory is by no means empty, since a new user
normally receives a number of “profile” files as his basic equipment. When
a user logs in, his shell uses his home directory as its current directory, i. e.,
immediately after logging in the user is deposited there.

⟨shell⟩ The name of the program to be started by login after successful authentication—
this is usually a shell. The seventh field extends through the end of the line.

B The user can change this entry by means of the chsh program. The
eligible programs (shells) are listed in the /etc/shells file. If a user is
not supposed to have an interactive shell, an arbitrary program, with
arguments, can be entered here (a common candidate is /bin/true). This
field may also remain empty, in which case the standard shell /bin/sh
will be started.

B If you log in to a graphical environment, various programs will be
started on your behalf, but not necessarily an interactive shell. The
shell entry in /etc/passwd comes into its own, however, when you in-
voke a terminal emulator such as xterm or konsole, since these programs
usually check it to identify your preferred shell.

Some of the fields shown here may be empty. Absolutely necessary are only the
user name, UID, GID and home directory. For most user accounts, all the fields
will be filled in, but pseudo-users might use only part of the fields.

The home directories are usually located below /home and take their name from home directories

their owner’s user name. In general this is a fairly sensible convention which
makes a given user’s home directory easy to find. In theory, a home directory
might be placed anywhere in the file system under a completely arbitrary name.

B On large systems it is common to introduce one or more additional levels
of directories between /home and the “user name” directory, such as

Copyright © 2012 Linup Front GmbH

176 13 User Administration

/home/hr/joe Joe from Human Resources
/home/devel/sue Sue from Development
/home/exec/bob Bob the CEO

There are several reasons for this. On the one hand this makes it easier to
keep one department’s home directory on a server within that department,
while still making it available to other client computers. On the other hand,
Unix (and some Linux) file systems used to be slow dealing with directories
containing very many files, which would have had an unfortunate impact
on a /home with several thousand entries. However, with current Linux file
systems (ext3 with dir_index and similar) this is no longer an issue.

Note that as an administrator you should not really be editing /etc/passwd by
hand. There is a number of programs that will help you create and maintain usertools

accounts.

B In principle it is also possible to store the user database elsewhere than in
/etc/passwd. On systems with very many users (thousands), storing user
data in a relational database is preferable, while in heterogeneous networks
a shared multi-platform user database, e. g., based on an LDAP directory,
might recommend itself. The details of this, however, are beyond the scope
of this course.

13.2.2 The /etc/shadow File

For security, nearly all current Linux distributions store encrypted user passwords
in the /etc/shadow file (“shadow passwords”). This file is unreadable for normal
users; only root may write to it, while members of the shadow group may read it in
addition to root. If you try to display the file as a normal user an error occurs.

B Use of /etc/shadow is not mandatory but highly recommended. However
there may be system configurations where the additional security afforded
by shadow passwords is nullified, for example if NIS is used to export user
data to other hosts (especially in heterogeneous Unix environments).

Again, this file contains one line for each user, with the following format:format

⟨user name⟩:⟨password⟩:⟨change⟩:⟨min⟩:⟨max⟩�
�:⟨warn⟩:⟨grace⟩:⟨lock⟩:⟨reserved⟩

For example:

root:gaY2L19jxzHj5:10816:0:10000::::

daemon:*:8902:0:10000::::

joe:GodY6c5pZk1xs:10816:0:10000::::

Here is the meaning of the individual fields:

user name This must correspond to an entry in the /etc/passwd file. This field
“joins” the two files.

password The user’s encrypted password. An empty field generally means that
the user can log in without a password. An asterisk or an exclamation point
prevent the user in question from logging in. It is common to lock user’s ac-
counts without deleting them entirely by placing an asterisk or exclamation
point at the beginning of the corresponding password.

change The date of the last password change, in days since 1 January 1970.

Copyright © 2012 Linup Front GmbH

13.2 User and Group Information 177

min The minimal number of days that must have passed since the last password
change before the password may be changed again.

max The maximal number of days that a password remains valid without hav-
ing to be changed. After this time has elapsed the user must change his
password.

warn The number of days before the expiry of the ⟨max⟩ period that the user will
be warned about having to change his password. Generally, the warning
appears when logging in.

grace The number of days, counting from the expiry of the ⟨max⟩ period, after
which the account will be locked if the user does not change his password.
(During the time from the expiry of the ⟨max⟩ period and the expiry of this
grace period the user may log in but must immediately change his pass-
word.)

lock The date on which the account will be definitively locked, again in days since
1 January 1970.

Some brief remarks concerning password encryption are in order. You might
think that if passwords are encrypted they can also be decrypted again. This would
open all of the system’s accounts to a clever cracker who manages to obtain a copy
of /etc/shadow. However, in reality this is not the case, since password “encryption”
is a one-way street. It is impossible to recover the decrypted representation of a
Linux password from the “encrypted” form because the method used for encryp-
tion prevents this. The only way to “crack” the encryption is by encrypting likely
passwords and checking whether they match what is in /etc/shadow.

B Let’s assume you select the characters of your password from the 95 vis-
ible ASCII characters (uppercase and lowercase letters are distinguished).
This means that there are 95 different one-character passwords, 952 = 9025
two-character passwords, and so on. With eight characters you are already
up to 6.6 quadrillion (6.6 ⋅ 1015) possibilities. Stipulating that you can trial-
encrypt 250,000 passwords per second (not entirely unrealistic on current
hardware), this means you would require approximately 841 years to work
through all possible passwords.

B But do not feel too safe yet. The traditional method (usually called “crypt”
or “DES”—the latter because it is based on, but not identical to, the epony-
mous encryption method3) should no longer be used if you can avoid it. It
has the unpleasant property of only looking at the first eight characters of
the entered password, and clever crackers can nowadays buy enough disk
space to build a pre-encrypted cache of the 50 million (or so) most common
passwords. To “crack” a password they only need to search their cache for
the encrypted password, which can be done extremely quickly, and read off
the corresponding clear-text password.

B To make things even more laborious, when a newly entered password is
encrypted the system traditionally adds a random element (the so-called
“salt”) which selects one of 4096 different possibilities for the encrypted
password. The main purpose of the salt is to avoid random hits result-
ing from user 𝑋, for some reason or other, getting a peek at the content
of /etc/shadow and noting that his encrypted password looks just like that
of user 𝑌 (hence letting him log into user 𝑌’s account using his own clear-
text password). For a pleasant side effect, the disk space required for the

3If you must know exactly: The clear-text password is used as the key (!) to encrypt a constant
string (typically a sequence of zero bytes). A DES key is 56 bits, which just happens to be 8 characters
of 7 bits each (as the leftmost bit in each character is ignored). This process is repeated for a total of
25 rounds, with the previous round’s output serving as the new input. Strictly speaking the encryption
scheme used isn’t quite DES but changed in a few places, to make it less feasible to construct a special
password-cracking computer from commercially available DES encryption chips.

Copyright © 2012 Linup Front GmbH

178 13 User Administration

cracker’s pre-encrypted dictionary from the previous paragraph is blown
up by a factor of 4096.

B Nowadays, password encryption is commonly based on the MD5 algorithm,
allows for passwords of arbitrary length and uses a 48-bit salt instead of
the traditional 12 bits. Kindly enough, the encryption works much more
slowly than “crypt”, which is irrelevant for the usual purpose (checking a
password upon login—you can still encrypt several hundred passwords per
second) but does encumber clever crackers to a certain extent. (You should
not let yourself be bothered by the fact that cryptographers poo-poo the
MD5 scheme as such due to its insecurity. As far as password encryption is
concerned, this is quite meaningless.)

A You should not expect too much of the various password administration pa-
rameters. They are being used by the text console login process, but whether
other parts of the system (such as the graphical login screen) pay them any
notice depends on your setup. Nor is there usually an advantage in forc-
ing new passwords on users at short intervals—this usually results in a se-
quence like bob1, bob2, bob3, …, or users alternate between two passwords.
A minimal interval that must pass before a user is allowed to change their
password again is outright dangerous, since it may give a cracker a “win-
dow” for illicit access even though the user knows their password has been
compromised.

The problem you need to cope with as a system administrator is usually not
people trying to crack your system’s passwords by “brute force”. It is much more
promising, as a rule, to use “social engineering”. To guess your password, the
clever cracker does not start at a, b, and so on, but with your spouse’s first name,
your kids’ first names, your car’s plate number, your dog’s birthday et cetera. (We
do not in any way mean to imply that you would use such a stupid password. No,
no, not you by any means. However, we are not quite so positive about your boss
…) And then there is of course the time-honoured phone call approach: “Hi, this
is the IT department. We’re doing a security systems test and urgently require
your user name and password.”

There are diverse ways of making Linux passwords more secure. Apart from
the improved encryption scheme mentioned above, which by now is used by
default by most Linux distributions, these include complaining about (too) weak
passwords when they are first set up, or proactively running software that will try
to identify weak encrypted passwords, just like clever crackers would (Caution:
Do this in your workplace only with written (!) pre-approval from your boss!).
Other methods avoid passwords completely in favour of constantly changing
magic numbers (as in SecurID) or smart cards. All of this is beyond the scope of
this manual, and therefore we refer you to the Linup Front manual Linux Security.

13.2.3 The /etc/group File

By default, Linux keeps group information in the /etc/group file. This file containsgroup database

one-line entry for each group in the system, which like the entries in /etc/passwd

consists of fields separated by colons (:). More precisely, /etc/group contains four
fields per line.

⟨group name⟩:⟨password⟩:⟨GID⟩:⟨members⟩

Their meaning is as follows:

⟨group name⟩ The name of the group, for use in directory listings, etc.

⟨password⟩ An optional password for this group. This lets users who are not mem-
bers of the group via /etc/shadow or /etc/group assume membership of the
group using newgrp. A “*” as an invalid character prevents normal users

Copyright © 2012 Linup Front GmbH

13.2 User and Group Information 179

from changing to the group in question. A “x” refers to the separate pass-
word file /etc/gshadow.

⟨GID⟩ The group’s numerical group identifier.

⟨Members⟩ A comma-separated list of user names. This list contains all users who
have this group as a secondary group, i. e., who are members of this group
but have a different value in the GID field of their /etc/passwd entry. (Users
with this group as their primary group may also be listed here but that is
unnecessary.)

A /etc/group file could, for example, look like this:

root:x:0:root

bin:x:1:root,daemon

users:x:100:

project1:x:101:joe,sue

project2:x:102:bob

The entries for the root and bin groups are entries for administrative groups, sim- administrative groups

ilar to the system’s pseudo-user accounts. Many files are assigned to groups like
this. The other groups contain user accounts.

Like UIDs, GIDs are counted from a specific value, typically 100. For a valid GID values

entry, at least the first and third field (group name and GID) must be filled in.
Such an entry assigns a GID (which might occur in a user’s primary GID field in
/etc/passwd) a textual name.

The password and/or membership fields must only be filled in for groups that
are assigned to users as secondary groups. The users listed in the membership membership list

list are not asked for a password when they want to change GIDs using the newgrp

command. If an encrypted password is given, users without an entry in the mem- group password

bership list can authenticate using the password to assume membership of the
group.

B In practice, group passwords are hardly if ever used, as the administrative
overhead barely justifies the benefits to be derived from them. On the one
hand it is more convenient to assign the group directly to the users in ques-
tion (since, from version 2.6 of the Linux kernel on, there is no limit to the
number of secondary groups a user can join), and on the other hand a single
password that must be known by all group members does not exactly make
for bullet-proof security.

B If you want to be safe, ensure that there is an asterisk (“*”) in every group
password slot.

13.2.4 The /etc/gshadow File

As for the user database, there is a shadow password extension for the group
database. The group passwords, which would otherwise be encrypted but read-
able for anyone in /etc/group (similar to /etc/passwd), are stored in the separate file
/etc/gshadow. This also contains additional information about the group, for ex-
ample the names of the group administrators who are entitled to add or remove
members from the group.

Exercises

C 13.5 [1] Which value will you find in the second column of the /etc/passwd

file? Why do you find that value there?

C 13.6 [2] Switch to a text console (using, e. g., Alt + F1) and try logging in
but enter your user name in uppercase letters. What happens?

Copyright © 2012 Linup Front GmbH

180 13 User Administration

13.3 Managing User Accounts and Group Information

After a new Linux distribution has been installed, there is often just the root ac-
count for the system administrator and the pseudo-users’ accounts. Any other
user accounts must be created first (and most distributions today will gently but
firmly nudge the installing person to create at least one “normal” user account).

As the administrator, it is your job to create and manage the accounts for all
required users (real and pseudo). To facilitate this, Linux comes with several toolstools for user management

for user management. With them, this is mostly a straightforward task, but it is
important that you understand the background.

13.3.1 Creating User Accounts

The procedure for creating a new user account is always the same (in principle)
and consists of the following steps:

1. You must create entries in the /etc/passwd (and possibly /etc/shadow) files.

2. If necessary, an entry (or several) in the /etc/group file is necessary.

3. You must create the home directory, copy a basic set of files into it, and
transfer ownership of the lot to the new user.

4. If necessary, you must enter the user in further databases, e. g., for disk quo-
tas, database access privilege tables and special applications.

All files involved in adding a new account are plain text files. You can perform
each step manually using a text editor. However, as this is a job that is as tedious
as it is elaborate, it behooves you to let the system help you, by means of the useradd

program.
In the simplest case, you pass useradd merely the new user’s user name. Op-useradd

tionally, you can enter various other user parameters; for unspecified parameters
(typically the UID), “reasonable” default values will be chosen automatically. On
request, the user’s home directory will be created and endowed with a basic set of
files that the program takes from the /etc/skel directory. The useradd command’s
syntax is:

useradd [⟨options⟩] ⟨user name⟩

The following options (among others) are available:

-c comment GECOS field entry

-d home directory If this option is missing, /home/⟨user name⟩ is assumed

-e date On this date the account will be deactivated automatically (format “YYYY-
MM-DD”)

-g group The new user’s primary group (name or GID). This group must exist.

-G group[,group]… Supplementary groups (names or GIDs). These groups must
also exist.

-s shell The new user’s login shell

-u UID The new user’s numerical UID. This UID must not be already in use, un-
less the “-o” option is given

-m Creates the home directory and copies the basic set of files to it. These files
come from /etc/skel, unless a different directory was named using “-k
⟨directory⟩”.

For instance, the

Copyright © 2012 Linup Front GmbH

13.3 Managing User Accounts and Group Information 181

useradd -c "Joe Smith" -m -d /home/joe -g devel -k /etc/skel.devel

command creates an account by the name of joe for a user called Joe Smith, and
assigns it to the devel group. joe’s home directory is created as /home/joe, and the
files from /etc/skel.devel are being copied into it.

B With the -D option (on SUSE distributions, --show-defaults) you may set de-
fault values for some of the properties of new user accounts. Without addi-
tional options, the default values are displayed:

useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/sh

SKEL=/etc/skel

CREATE_MAIL_SPOOL=no

You can change these values using the -g, -b, -f, -e, and -s options, respec-
tively:

useradd -D -s /usr/bin/zsh zsh as the default shell

The final two values in the list cannot be changed.

B useradd is a fairly low-level tool. In real life, you as an experienced adminis-
trator will likely not be adding new user accounts by means of useradd, but
through a shell script that incorporates your local policies (just so you don’t
have to remember them all the time). Unfortunately you will have to come
up with this shell script by yourself—at least unless you are using Debian
GNU/Linux or one of its derivatives (see below).

Watch out: Even though every serious Linux distribution comes with a program
called useradd, the implementations differ in their details.

The Red Hat distributions include a fairly run-of-the-mill version of useradd,
without bells and whistles, which provides the features discussed above.

The SUSE distributions’ useradd is geared towards optionally adding users to
a LDAP directory rather than the /etc/passwd file. (This is why the -D option
cannot be used to query or set default values like it can elsewhere—it is
already spoken for to do LDAPy things.) The details are beyond the scope
of this manual.

On Debian GNU/Linux and Ubuntu, useradd does exist but the recom-
mended method to create new user accounts is a program called adduser

(thankfully this is not confusing). The advantage of adduser is that it plays
according to Debian GNU Linux’s rules, and furthermore makes it possible
to execute arbitrary other actions for a new account besides creating the
actual account. For example, one might create a directory in a web server’s
document tree so that the new user (and nobody else) can publish files
there, or the user could automatically be authorised to access a database
server. You can find the details in adduser(8) and adduser.conf(5).

After it has been created using useradd, the new account is not yet accessible;
the system administrator must first set up a password. We shall be explaining this password

presently.

Copyright © 2012 Linup Front GmbH

182 13 User Administration

13.3.2 The passwd Command

The passwd command is used to set up passwords for users. If you are logged in as
root, then

passwd joe

asks for a new password for user john (You must enter it twice as it will not be
echoed to the screen).

The passwd command is also available to normal users, to let them change their
own passwords (changing other users’ passwords is root’s prerogative):

$ passwd

Changing password for joe.

(current) UNIX password: secret123

Enter new UNIX password: 321terces

Retype new UNIX password: 321terces

passwd: password updated successfully

Normal users must enter their own password correctly once before being allowed
to set a new one. This is supposed to make life difficult for practical jokers that
play around on your computer if you had to step out very urgently and didn’t
have time to engage the screen lock.

On the side, passwd serves to manage various settings in /etc/shadow. For exam-
ple, you can look at a user’s “password state” by calling the passwd command with
the -S option:

passwd -S bob

bob LK 10/15/99 0 99999 7 0

The first field in the output is (once more) the user name, followed by the password
state: “PS” or “P” if a password is set, “LK” or “L” for a locked account, and “NP” for
an account with no password at all. The other fields are, respectively, the date of
the last password change, the minimum and maximum interval for changing the
password, the expiry warning interval and the “grace period” before the account
is locked completely after the password has expired. (See also Section 13.2.2.)

You can change some of these settings by means of passwd options. Here are a
few examples:

passwd -l joe Lock the account
passwd -u joe Unlock the account
passwd -m 7 joe Password change at most every 7 days
passwd -x 30 joe Password change at lesat every 30 days
passwd -w 3 joe 3 days grace period before password expires

E Locking and unlocking accounts by means of -l and -u works by putting
a “!” in front of the encrypted password in /etc/shadow. Since “!” cannot
result from password encryption, it is impossible to enter something upon
login that matches the “encrypted password” in the user database—hence
access via the usual login procedure is prevented. Once the “!” is removed,
the original password is back in force. (Astute, innit?) However, you should
keep in mind that users may be able to gain access to the system by other
means that do not refer to the encrypted password in the user database,
such as the secure shell with public-key authentication.

Changing the remaining settings in /etc/shadow requires the chage command:

chage -E 2009-12-01 joe Lock account from 1 Dec 2009
chage -E -1 joe Cancel expiry date

Copyright © 2012 Linup Front GmbH

13.3 Managing User Accounts and Group Information 183

chage -I 7 joe Grace period 1 week from password expiry
chage -m 7 joe Like passwd -m

chage -M 7 joe Like passwd -x (Grr.)
chage -W 3 joe Like passwd -w (Grr, grr.)

(chage can change all settings that passwd can change, and then some.)

B If you cannot remember the option names, invoke chage with the name of
a user account only. The program will present you with a sequence of the
current values to change or confirm.

You cannot retrieve a clear-text password even if you are the administrator.
Even checking /etc/shadow doesn’t help, since this file stores all passwords already
encrypted. If a user forgets their password, it is usually sufficient to reset their
password using the passwd command.

B Should you have forgotten the root password and not be logged in as root by
any chance, your last option is to boot Linux to a shell, or boot from a rescue
disk or CD. After that, you can use an editor to clear the ⟨password⟩ field of
the root entry in /etc/passwd.

Exercises

C 13.7 [3] Change user joe’s password. How does the /etc/shadow file change?
Query that account’s password state.

C 13.8 [!2] The user dumbo has forgotten his paassword. How can you help
him?

C 13.9 [!3] Adjust the settings for user joe’s password such that he can change
his password after at least a week, and must change it after at most two
weeks. There should be a warning two days before the two weeks are up.
Check the settings afterwards.

13.3.3 Deleting User Accounts

To delete a user account, you need to remove the user’s entries from /etc/passwd

and /etc/shadow, delete all references to that user in /etc/group, and remove the
user’s home directory as well as all other files created or owned by that user. If
the user has, e. g., a mail box for incoming messages in /var/mail, that should also
be removed.

Again there is a suitable command to automate these steps. The userdel com- userdel

mand removes a user account completely. Its syntax:

userdel [-r] ⟨user name⟩

The -r option ensures that the user’s home directory (including its content) and
his mail box in /var/mail will be removed; other files belonging to the user—e. g.,
crontab files—must be delete manually. A quick way to locate and remove files
belonging to a certain user is the

find / -uid ⟨UID⟩ -delete

command. Without the -roption, only the user information is removed from the
user database; the home directory remains in place.

Copyright © 2012 Linup Front GmbH

184 13 User Administration

13.3.4 Changing User Accounts and Group Assignment

User accounts and group assignments are traditionally changed by editing the
/etc/passwd and /etc/group files. However, many systems contain commands like
usermod and groupmod for the same purpose, and you should prefer these since they
are safer and—mostly—more convenient to use.

The usermod program accepts mostly the same options as useradd, but changesusermod

existing user accounts instead of creating new ones. For example, with

usermod -g ⟨group⟩ ⟨user name⟩

you could change a user’s primary group.
Caution! If you want to change an existing user account’s UID, you could editChanging UIDs

the ⟨UID⟩ field in /etc/passwd directly. However, you should at the same time trans-
fer that user’s files to the new UID using chown: “chown -R tux /home/tux” re-confers
ownership of all files below user tux’s home directory to user tux, after you have
changed the UID for that account. If “ls -l” displays a numerical UID instead of
a textual name, this implies that there is no user name for the UID of these files.
You can fix this using chown.

13.3.5 Changing User Information Directly—vipw

The vipw command invokes an editor (vi or a different one) to edit /etc/passwd di-
rectly. At the same time, the file in question is locked in order to keep other users
from simultaneously changing the file using, e. g., passwd (which changes would
be lost). With the -s option, /etc/shadow can be edited.

B The actual editor that is invoked is determined by the value of the VISUAL

environment variable, alternatively that of the EDITOR environment variable;
if neither exists, vi will be launched.

Exercises

C 13.10 [!2] Create a user called test. Change to the test account and create a
few files using touch, including a few in a different directory than the home
directory (say, /tmp). Change back to root and change test’s UID. What do
you see when listing user test’s files?

C 13.11 [!2] Create a user called test1 using your distribution’s graphical tool
(if available), test2 by means of the useradd command, and another, test3,
manually. Look at the configuration files. Can you work without problems
using any of these three accounts? Create a file using each of the new ac-
counts.

C 13.12 [!2] Delete user test2’s account and ensure that there are no files left
on the system that belong to that user.

C 13.13 [2] Change user test1’s UID. What else do you need to do?

C 13.14 [2] Change user test1’s home directory from /home/test1 to /home/user/

test1.

13.3.6 Creating, Changing and Deleting Groups

Like user accounts, you can create groups using any of several methods. The
“manual” method is much less tedious here than when creating new user ac-
counts: Since groups do not have home directories, it is usually sufficient to edit
the /etc/group file using any text editor, and to add a suitable new line (see be-
low for vigr). When group passwords are used, another entry must be added to
/etc/gshadow.

Copyright © 2012 Linup Front GmbH

13.3 Managing User Accounts and Group Information 185

Incidentally, there is nothing wrong with creating directories for groups.
Group members can place the fruits of their collective labour there. The approach
is similar to creating user home directories, although no basic set of configuration
files needs to be copied.

For group management, there are, by analogy to useradd, usermod, and userdel,
the groupadd, groupmod, and groupdel programs that you should use in favour of edit-
ing /etc/group and /etc/gshadow directly. With groupadd you can create new groups groupadd

simply by giving the correct command parameters:

groupadd [-g ⟨GID⟩] ⟨group name⟩

The -g option allows you to specify a given group number. As mentioned be-
fore, this is a positive integer. The values up to 99 are usually reserved for system
groups. If -g is not specified, the next free GID is used.

You can edit existing groups with groupmod without having to write to /etc/group groupmod

directly:

groupmod [-g ⟨GID⟩] [-n ⟨name⟩] ⟨group name⟩

The “-g ⟨GID⟩” option changes the group’s GID. Unresolved file group assign-
ments must be adjusted manually. The “-n ⟨name⟩” option sets a new name for the
group without changing the GID; manual adjustments are not necessary.

There is also a tool to remove group entries. This is unsurprisingly called
groupdel: groupdel

groupdel ⟨group name⟩

Here, too, it makes sense to check the file system and adjust “orphaned” group
assignments for files with the chgrp command. Users’ primary groups may not be
removed—the users in question must either be removed beforehand, or they must
be reassigned to a different primary group.

The gpasswd command is mainly used to manipulate group passwords in a way gpasswd

similar to the passwd command. The system administrator can, however, delegate
the administration of a group’s membership list to one or more group adminis- group administrator

trators. Group administrators also use the gpasswd command:

gpasswd -a ⟨user⟩ ⟨group⟩

adds the ⟨user⟩ to the ⟨group⟩, and

gpasswd -d ⟨user⟩ ⟨group⟩

removes him again. With

gpasswd -A ⟨user⟩,… ⟨group⟩

the system administrator can nominate users who are to serve as group adminis-
trators.

The SUSE distributions haven’t included gpasswd for some time. Instead
there are modified versions of the user and group administration tools that
can handle an LDAP directory.

As the system administrator, you can change the group database directly using
the vigr command. It works like vipw, by invoking an editor for “exclusive” access vigr

to /etc/group. Similarly, “vigr -s” gives you access to /etc/gshadow.

Copyright © 2012 Linup Front GmbH

186 13 User Administration

Exercises

C 13.15 [2] What are groups needed for? Give possible examples.

C 13.16 [1] Can you create a directory that all members of a group can access?

C 13.17 [!2] Create a supplementary group test. Only user test1 should be a
member of that group. Set a group password. Log in as user test1 or test2

and try to change over to the new group.

Commands in this Chapter

adduser Convenient command to create new user accounts (Debian)
adduser(8) 181

chfn Allows users to change the GECOS field in the user database
chfn(1) 175

gpasswd Allows a group administrator to change a group’s membership and up-
date the group password gpasswd(1) 185

groupadd Adds user groups to the system group database groupadd(8) 185
groupdel Deletes groups from the system group database groupdel(8) 185
groupmod Changes group entries in the system group database groupmod(8) 185
groups Displays the groups that a user is a member of groups(1) 172
id Displays a user’s UID and GIDs id(1) 172
last List recently-logged-in users last(1) 172
useradd Adds new user accounts useradd(8) 180
userdel Removes user accounts userdel(8) 183
usermod Modifies the user database usermod(8) 183
vigr Allows editing /etc/group or /etc/gshadow with “file locking”, to avoid con-

flicts vipw(8) 185

Summary

• Access to the system is governed by user accounts.
• A user account has a numerical UID and (at least) one textual user name.
• Users can form groups. Groups have names and numerical GIDs.
• “Pseudo-users” and “pseudo-groups” serve to further refine access rights.
• The central user database is (normally) stored in the /etc/passwd file.
• The users’ encrypted passwords are stored—together with other password

parameters—in the /etc/shadow file, which is unreadable for normal users.
• Group information is stored in the /etc/group and /etc/gshadow files.
• Passwords are managed using the passwd program.
• The chage program is used to manage password parameters in /etc/shadow.
• User information is changed using vipw or—better—using the specialised

tools useradd, usermod, and userdel.
• Group information can be manipulated using the groupadd, groupmod, groupdel

and gpasswd programs.

Copyright © 2012 Linup Front GmbH

14
Access Control

Contents

14.1 The Linux Access Control System 188
14.2 Access Control For Files And Directories 188

14.2.1 The Basics . 188
14.2.2 Inspecting and Changing Access Permissions. 189
14.2.3 Specifying File Owners and Groups—chown and chgrp 190

14.3 Process Ownership 191
14.4 Special Permissions for Executable Files 191
14.5 Special Permissions for Directories 192

Goals

• Understanding the Linux access control/privilege mechanisms
• Being able to assign access permissions to files and directories
• Knowing about SUID, SGID and the “sticky bit”

Prerequisites

• Knowledge of Linux user and group concepts (see Chapter 13)
• Knowledge of Linux files and directories

adm1-rechte-opt.tex[!acls,!umask,!attrs] ()

188 14 Access Control

14.1 The Linux Access Control System

Whenever several users have access to the same computer system there must be
an access control system for processes, files and directories in order to ensureaccess control system

that user 𝐴 cannot access user 𝐵’s private files just like that. To this end, Linux
implements the standard system of Unix privileges.

In the Unix tradition, every file and directory is assigned to exactly one user
(its owner) and one group. Every file supports separate privileges for its owner,separate privileges

the members of the group it is assigned to (“the group”, for short), and all other
users (“others”). Read, write and execute privileges can be enabled individually
for these three sets of users. The owner may determine a file’s access privileges.
The group and others may only access a file if the owner confers suitable privileges
to them. The sum total of a file’s access permissions is also called its access mode.access mode

In a multi-user system which stores private or group-internal data on a gen-
erally accessible medium, the owner of a file can keep others from reading or
modifying his files by instituting suitable access control. The rights to a file can beaccess control

determined separately and independently for its owner, its group and the others.
Access permissions allow users to map the responsibilities of a group collabora-
tive process to the files that the group is working with.

14.2 Access Control For Files And Directories

14.2.1 The Basics

For each file and each directory in the system, Linux allows separate access rights
for each of the three classes of users—owner, members of the file’s group, others.
These rights include read permission, write permission, and execute permission.

As far as files are concerned, these permissions control approximately whatfile permissions

their names suggest: Whoever has read permission may look at the file’s content,
whoever has write permission is allowed to change its content. Execute permis-
sion is necessary to launch the file as a process.

B Executing a binary “machine-language program” requires only execute per-
mission. For files containing shell scripts or other types of “interpreted”
programs, you also need read permission.

For directories, things look somewhat different: Read permission is requireddirectory permissions

to look at a directory’s content—for example, by executing the ls command. You
need write permission to create, delete, or rename files in the directory. “Execute”
permission stands for the possibility to “use” the directory in the sense that you
can change into it using cd, or use its name in path names referring to files farther
down in the directory tree.

B In directories where you have only read permission, you may read the file
names but cannot find out anything else about the files. If you have only
“execute permission” for a directory, you can access files as long as you
know their names.

Usually it makes little sense to assign write and execute permission to a directory
separately; however, it may be useful in certain special cases.

A It is important to emphasise that write permission on a file is completely
immaterial if the file is to be deleted—you need write permission to the direc-
tory that the file is in and nothing else! Since “deleting” a file only removes
a reference to the actual file information (the inode) from the directory, this
is purely a directory operation. The rm command does warn you if you’re
trying to delete a file that you do not have write permission for, but if you
confirm the operation and have write permission to the directory involved,
nothing will stand in the way of the operation’s success. (Like any other

Copyright © 2012 Linup Front GmbH

14.2 Access Control For Files And Directories 189

Unix-like system, Linux has no way of “deleting” a file outright; you can
only remove all references to a file, in which case the Linux kernel decides
on its own that no one will be able to access the file any longer, and gets rid
of its content.)

B If you do have write permission to the file but not its directory, you cannot
remove the file completely. You can, however, truncate it down to 0 bytes
and thereby remove its content, even though the file itself still exists in prin-
ciple.

For each user, Linux determines the “most appropriate” access rights. For ex-
ample, if the members of a file’s group do not have read permission for the file
but “others” do, then the group members may not read the file. The (admittedly
enticing) rationale that, if all others may look at the file, then the group members,
who are in some sense also part of “all others”, should be allowed to read it as
well, does not apply.

14.2.2 Inspecting and Changing Access Permissions

You can obtain information about the rights, user and group assignment that ap- information

ply to a file using “ls -l”:

$ ls -l

-rw-r--r-- 1 joe users 4711 Oct 4 11:11 datei.txt

drwxr-x--- 2 joe group2 4096 Oct 4 11:12 testdir

The string of characters in the first column of the table details the access permis-
sions for the owner, the file’s group, and others (the very first character is just the
file type and has nothing to do with permissions). The third column gives the
owner’s user name, and the fourth that of the file’s group.

In the permissions string, “r”, “w”, and “x” signify existing read, write, and
execute permission, respectively. If there is just a “-” in the list, then the corre-
sponding category does not enjoy the corresponding privilege. Thus, “rw-r--r--”
stands for “read and write permission for the owner, but read permission only for
group members and others”.

As the file owner, you may set access permissions for a file using the chmod com- chmod command

mand (from “change mode”). You can specify the three categories by means of the
abbreviations “u” (user) for the owner (yourself), “g” (group) for the file’s group’s
members, and “o” (others) for everyone else. The permissions themselves are
given by the already-mentioned abbreviations “r”, “w”, and “x”. Using “+”, “-”,
and “=”, you can specify whether the permissions in question should be added to
any existing permissions, “subtracted” from the existing permissions, or used to
replace whatever was set before. For example:

$ chmod u+x file Execute permission for owner
$ chmod go+w file sets write permission for group and others
$ chmod g+rw file sets read and write permission for group
$ chmod g=rw,o=r file sets read and write permission,

removes group execute permission;
sets just read permission for others

$ chmod a+w file equivalent to ugo+w

B In fact, permission specifications can be considerably more complex. Con-
sult the info documentation for chmod to find out all the details.

A file’s owner is the single user (apart from root) who is allowed to change a
file’s or directory’s access permissions. This privilege is independent of the actual
permissions; the owner may take away all their own permissions, but that does
not keep them from giving them back later.

The general syntax of the chmod command is

Copyright © 2012 Linup Front GmbH

190 14 Access Control

chmod [⟨options⟩] ⟨permissions⟩ ⟨name⟩ …

You can give as many file or directory names as desired. The most important
options include:

-R If a directory name is given, the permissions of files and directories inside this
directory will also be changed (and so on all the way down the tree).

--reference=⟨name⟩ Uses the access permissions of file ⟨name⟩. In this case no
⟨permissions⟩ must be given with the command.

B You may also specify a file’s access mode “numerically” instead of “symbol-
ically” (what we just discussed). In practice this is very common for setting
all permissions of a file or directory at once, and works like this: The three
permission triples are represented as a three-digit octal number—the first
digit describes the owner’s rights, the second those of the file’s group, and
the third those that apply to “others”. Each of these digits derives from
the sum of the individual permissions, where read permission has value 4,
write permission 2, and execute permission 1. Here are a few examples for
common access modes in “ls -l” and octal form:

rw-r--r-- 644
r-------- 400
rwxr-xr-x 755

B Using numerical access modes, you can only set all permissions at once—
there is no way of setting or removing individual rights while leaving the
others alone, like you can do with the “+” and “-” operators of the symbolic
representation. Hence, the command

$ chmod 644 file

is equivalent to the symbolic

$ chmod u=rw,go=r file

14.2.3 Specifying File Owners and Groups—chown and chgrp

The chown command lets you set the owner and group of a file or directory. This
command takes the desired owner’s user name and/or group name and the file
or directory name the change should apply to. It is called like

chown ⟨user name⟩[:][⟨group name⟩] ⟨name⟩ …

chown :⟨group name⟩ ⟨name⟩ …

If both a user and group name are given, both are changed; if just a user name is
given, the group remains as it was; if a user name followed by a colon is given,
then the file is assigned to the user’s primary group. If just a group name is given
(with the colon in front), the owner remains unchanged. For example:

chown joe:devel letter.txt

chown www-data foo.html new user www-data

chown :devel /home/devel new group devel

B chown also supports an obsolete syntax where a dot is used in place of the
colon.

Copyright © 2012 Linup Front GmbH

14.3 Process Ownership 191

To “give away” files to other users or arbitrary groups you need to be root. The
main reason for this is that normal users could otherwise annoy one another if
the system uses quotas (i.e., every user can only use a certain amount of storage
space).

Using the chgrp command, you can change a file’s group even as a normal
user—as long as you own the file and are a member of the new group:

chgrp ⟨group name⟩ ⟨name⟩ …

B Changing a file’s owner or group does not change the access permissions
for the various categories.

chown and chgrp also support the -R option to apply changes recursively to part
of the directory hierarchy.

B Of course you can also change a file’s permissions, group, and owner using
most of the popular file browsers (such as Konqueror or Nautilus).

Exercises

C 14.1 [!2] Create a new file. What is that file’s group? Use chgrp to assign the
file to one of your secondary groups. What happens if you try to assign the
file to a group that you are not a member of?

C 14.2 [4] Compare the mechanisms that various file browsers (like Kon-
queror, Nautilus, …) offer for setting a file’s permissions, owner, group, …
Are there notable differences?

14.3 Process Ownership

Linux considers not only the data on a storage medium as objects that can be
owned. The processes on the system have owners, too.

Many commands create a process in the system’s memory. During normal use,
there are always several processes that the system protects from each other. Every
process together with all data within its virtual address space is assigned to a Processes have owners

user, its owner. This is most often the user who started the process—but processes
created using administrator privileges may change their ownership, and the SUID
mechanism (Section 14.4) can also have a hand in this.

The owners of processes are displayed by the ps program if it is invoked using
the -u option.

ps -u

USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND

bin 89 0.0 1.0 788 328 ? S 13:27 0:00 rpc.portmap

test1 190 0.0 2.0 1100 28 3 S 13:27 0:00 bash

test1 613 0.0 1.3 968 24 3 S 15:05 0:00 vi XF86.tex

nobody 167 0.0 1.4 932 44 ? S 13:27 0:00 httpd

root 1 0.0 1.0 776 16 ? S 13:27 0:03 init [3]

root 2 0.0 0.0 0 0 ? SW 13:27 0:00 (kflushd)

14.4 Special Permissions for Executable Files

When listing files using the “ls -l” command, you may sometimes encounter per-
mission sets that differ from the usual rwx, such as

-rwsr-xr-x 1 root shadow 32916 Dec 11 20:47 /usr/bin/passwd

Copyright © 2012 Linup Front GmbH

192 14 Access Control

What does that mean? We have to digress here for a bit:
Assume that the passwd program carries the usual access mode:

-rwxr-xr-x 1 root shadow 32916 Dec 11 20:47 /usr/bin/passwd

A normal (unprivileged) user, say joe, wants to change his password and invokes
the passwd program. Next, he receives the message “permission denied”. What is
the reason? The passwd process (which uses joe’s privileges) tries to open the /etc/

shadow file for writing and fails, since only root may write to that file—this cannot
be different since otherwise, everybody would be able to manipulate passwords
arbitrarily and, for example, change the root password.

By means of the set-UID bit (frequently called “SUID bit”, for short) a programSUID bit

can be caused to run not with the invoker’s privileges but those of the file owner—
here, root. In the case of passwd, the process executing passwd has write permission
to /etc/shadow, even though the invoking user, not being a system administrator,
generally doesn’t. It is the responsibility of the author of the passwd program to en-
sure that no monkey business goes on, e. g., by exploiting programming errors to
change arbitrary files except /etc/shadow, or entries in /etc/shadow except the pass-
word field of the invoking user. On Linux, by the way, the set-UID mechanism
works only for binary programs, not shell or other interpreter scripts.

B Bell Labs used to hold a patent on the SUID mechanism, which was invented
by Dennis Ritchie [SUID]. Originally, AT&T distributed Unix with the
caveat that license fees would be levied after the patent had been granted;
however, due to the logistical difficulties of charging hundreds of Unix in-
stallations small amounts of money retroactively, the patent was released
into the public domain.

By analogy to the set-UID bit there is a SGID bit, which causes a process to beSGID bit

executed with the program file’s group and the corresponding privileges (usually
to access other files assigned to that group) rather than the invoker’s group setting.

The SUID and SGID modes, like all other access modes, can be changed usingchmod syntax

the chmod program, by giving symbolic permissions such as u+s (sets the SUID bit)
or g-s (deletes the SGID bit). You can also set these bits in octal access modes by
adding a fourth digit at the very left: The SUID bit has the value 4, the SGID bit
the value 2—thus you can assign the access mode 4755 to a file to make it readable
and executable to all users (the owner may also write to it) and to set the SUID bit.

You can recognise set-UID and set-GID programs in the output of “ls -l” byls output

the symbolic abbreviations “s” in place of “x” for executable files.

14.5 Special Permissions for Directories

There is another exception from the principle of assigning file ownership accord-
ing to the identity of its creator: a directory’s owner can decree that files created
in that directory should belong to the same group as the directory itself. This can
be specified by setting the SGID bit on the directory. (As directories cannot beSGID for directories

executed, the SGID bit is available to be used for such things.)
A directory’s access permissions are not changed via the SGID bit. To create a

file in such a directory, a user must have write permission in the category (owner,
group, others) that applies to him. If, for example, a user is neither the owner of a
directory nor a member of the directory’s group, the directory must be writable for
“others” for him to be able to create files there. A file created in a SGID directory
then belongs to that directory’s group, even if the user is not a member of that
group at all.

B The typical application for the SGID bit on a directory is a directory that is
used as file storage for a “project group”. (Only) the members of the project
group are supposed to be able to read and write all files in the directory, and

Copyright © 2012 Linup Front GmbH

14.5 Special Permissions for Directories 193

to create new files. This means that you need to put all users collaborating
on the project into a project group (a secondary group will suffice):

groupadd project Create new group
usermod -a -G project joe joe into the group
usermod -a -G project sue sue too
�����

Now you can create the directory and assign it to the new group. The owner
and group are given all permissions, the others none; you also set the SGID
bit:

cd /home/project

chgrp project /home/project

chmod u=rwx,g=srwx /home/project

Now, if user hugo creates a file in /home/project, that file should be assigned
to group project:

$ id

uid=1000(joe) gid=1000(joe) groups=101(project),1000(joe)

$ touch /tmp/joe.txt Test: standard directory
$ ls -l /tmp/joe.txt

-rw-r--r-- 1 joe joe 0 Jan 6 17:23 /tmp/joe.txt

$ touch /home/project/joe.txt project directory
$ ls -l /home/project/joe.txt

-rw-r--r-- 1 joe project 0 Jan 6 17:24 /home/project/joe.txt

There is just a little fly in the ointment, which you will be able to discern by
looking closely at the final line in the example: The file does belong to the
correct group, but other members of group project may nevertheless only
read it. If you want all members of group project to be able to write to it as
well, you must either apply chmod after the fact (a nuisance) or else set the
umask such that group write permission is retained (see Exercise 14.4).

The SGID mode only changes the system’s behaviour when new files are cre-
ated. Existing files work just the same as everywhere else. This means, for in-
stance, that a file created outside the SGID directory keeps its existing group as-
signment when moved into it (whereas on copying, the new copy would be put
into the directory’s group).

The chgrp program works as always in SGID directories, too: the owner of a
file can assign it to any group he is a member of. Is the owner not a member of
the directory’s group, he cannot put the file into that group using chgrp—he must
create it afresh within the directory.

B It is possible to set the SUID bit on a directory—this permission does not
signify anything, though.

Linux supports another special mode for directories, where only a file’s owner
may delete or remove files within that directory:

drwxrwxrwt 7 root root 1024 Apr 7 10:07 /tmp

This t mode, the “sticky bit”, can be used to counter a problem which arises when
public directories are in shared use: Write permission to a directory lets a user
delete other users’ files, regardless of their access mode and owner! For example,
the /tmp directories are common ground, and many programs create their tempo-
rary files there. To do so, all users have write permission to that directory. This
implies that any user has permission to delete files there.

Copyright © 2012 Linup Front GmbH

194 14 Access Control

Usually, when deleting or renaming a file, the system does not consider that
file’s access permissions. If the “sticky bit” is set on a directory, a file in that di-
rectory can subsequently be deleted only by its owner, the directory’s owner, or
root. The “sticky bit” can be set or removed by specifying the symbolic +t and -t

modes; in the octal representation it has value 1 in the same digit as SUID and
SGID.

B The “sticky bit” derives its name from an additional meaning it used to have
in earlier Unix systems: At that time, programs were copied to swap space
in their entirety when started, and removed completely after having ter-
minated. Program files with the sticky bit set would be left in swap space
instead of being removed. This would accelerate subsequent invocations of
those programs since no copy would have to be done. Like most current
Unix systems, Linux uses demand paging, i. e., it fetches only those parts
of the code from the program’s executable file that are really required, and
does not copy anything to swap space at all; on Linux, the sticky bit never
had its original meaning.

Exercises

C 14.3 [2] What does the special “s” privilege mean? Where do you find it?
Can you set this privilege on a file that you created yourself?

C 14.4 [!1] Which umask invocation can be used to set up a umask that would, in
the project directory example above, allow all members of the project group
to read and write files in the project directory?

C 14.5 [2] What does the special “t” privilege mean? Where do you find it?

C 14.6 [4] (For programmers.) Write a C program that invokes a suitable com-
mand (such as id). Set this program SUID root (or SGID root) and observe
what happens when you execute it.

C 14.7 [I]f you leave them alone for a few minutes with a root shell, clever users
might try to stash a SUID root shell somewhere in the system, in order to
assume administrator privileges when desired. Does that work with bash?
With other shells?

Commands in this Chapter

chgrp Sets the assigned group of a file or directory chgrp(1) 190
chmod Sets access modes for files and directories chmod(1) 189
chown Sets the owner and/or assigned group of a file or directory

chown(1) 190

Copyright © 2012 Linup Front GmbH

14.5 Bibliography 195

Summary

• Linux supports file read, write and execute permissions, where these per-
missions can be set separately for a file’s owner, the members of the file’s
group and “all others”.

• The sum total of a file’s permissions is also called its access mode.
• Every file (and directory) has an owner and a group. Access rights—read,

write, and execute permission—are assigned to these two categories and
“others” separately. Only the owner is allowed to set access rights.

• Access rights do not apply to the system administrator (root). He may read
or write all files.

• File permissions can be manipulated using the chmod command.
• Using chown, the system administrator can change the user and group as-

signment of arbitrary files.
• Normal users can use chgrp to assign their files to different groups.
• The SUID and SGID bits allow the execution of programs with the privileges

of the file owner or file group instead of those of the invoker.
• The SGID bit on a directory causes new files in that directory to be assigned

the directory’s group (instead of the primary group of the creating user).
• The “sticky bit” on a directory lets only the owner (and the system admin-

istrator) delete files.

Bibliography

SUID Dennis M. Ritchie. “Protection of data file contents”. US patent 4,135,240.

Copyright © 2012 Linup Front GmbH

15
Linux Networking

Contents

15.1 Networking Basics 198
15.1.1 Introduction and Protocols 198
15.1.2 Addressing and Routing 199
15.1.3 Names and the DNS. 201
15.1.4 IPv6 . 202

15.2 Linux As A Networking Client 203
15.2.1 Requirements 203
15.2.2 Troubleshooting 204

Goals

• Knowing basic networking concepts
• Understanding the requirements for integrating a Linux computer into an

(existing) LAN
• Knowing important troubleshooting commands
• Knowing about important network services

Prerequisites

• File handling (Chapter 6) and use of a text editor
• Knowledge of Linux file system structure (Chapter 10)
• Knowledge about TCP/IP and using network services is helpful

lxes-netz.tex ()

198 15 Linux Networking

15.1 Networking Basics

15.1.1 Introduction and Protocols

In the 21st century, computers are only really fun when they are connected to the
Internet—via a company-wide “local area network”, a home DSL router or, on the
go, a wireless connection (WiFi or cellular). There are various methods of getting
on the net—but whichever way you’re using, the Internet itself works pretty much
the same.

The Internet is based on a “protocol family” called “TCP/IP”. A protocol isTCP/IP

an agreement about how computers should talk to one another, and can cover
anything from particular electrical, optical or radio signals up to requests and re-
sponses from and to, e. g., a web server (but not all at the same time). Without
cutting things too finely, it is possible to distinguish three different types of pro-
tocol:

Medium access protocols govern data transmission (casually speaking) at the
level of network cards and cables. They include, for example, Ethernet (for
LANs) or WLAN protocols such as IEEE 802.11.

Communication protocols govern the communication between stations on differ-
ent networks. If you want to access a web site in Australia from Britain, the
communication protocols IP and TCP arrange for the data bytes you’re
sending to actually arrive “down under” and vice-versa.

Application protocols make sure that the recipient of your data bytes in Aus-
tralia can actually do something with them. The web application protocol,
HTTP, for example, allows you to retrieve a picture of a koala; the server in
Australia interprets your request and sends you the koala picture (instead
of the kangaroo picture), while your web browser in Britain can figure out
that you have actually been sent a picture and not a (textual) error message.

B This multi-tier setup has the considerable advantage that each layer must
only communicate with the layer immediately above and the layer imme-
diately below. The application protocol, HTTP, does not need to know how
bytes are moved from Britain to Australia (fortunately!), because it delegates
that job to the communication protocol. The communication protocol in
turn leaves the actual transmission of the bytes to the medium access pro-
tocol.

B At this point it is customary to refer to the “ISO/OSI reference model”,
which stipulates no less than seven (!) layers for the organisation of a com-
puter network. We will spare you the details in the interest of brevity.

The TCP/IP application protocols—besides HTTP, these include SMTP (for e-
mail), SSH (for interactive sessions on remote machines), DNS (for resolving host
names) or SIP (for Internet-based telephony), among many others—are usually
based on either of two communication protocols, UDP or TCP. While UDP pro-
vides a connectionless, unreliable service (in plain language: data can get lost
during transmission or arrive at the destination in a different order from that in
which they were sent), TCP offers a connection-oriented, reliable service (which
means all data will arrive at the other end in the proper sequence).

B The application determines which communication protocol is more appro-
priate. On the Web, you normally do not want data to go missing during
transmission (a piece of text, image, or downloaded software might get lost,
with annoying to catastrophic results), hence TCP is the correct choice. For
television or voice chat, it is usually preferrable to live with small breaks in
the service (a pixellated picture or a brief burst of static) than for everything
to grind to a halt while the system arranges for a missing datagram to be

Copyright © 2012 Linup Front GmbH

15.1 Networking Basics 199

retransmitted. At this point, UDP makes more sense. UDP is also better
for services like DNS, where small requests should result in very quick and
brief answers.

B The third TCP/IP communication protocol, ICMP, is used for control and
troubleshooting purposes and is normally not used directly by user-level
applications.

15.1.2 Addressing and Routing

In order to allow direct access via the Internet—your computer sends a request
to a specific server, and the response to that request must somehow find its way
back to your computer—, every computer uses a unique address, its “IP address”.
In the (still) most popular scheme, “IPv4”, this is a sequence of four “octets”, i. e.,
numbers from 0 to 255, such as 192.168.178.10.

You cannot simply pick any arbitrary IP address for your computer. Instead,
it is assigned one. In a company, this will be done by the systems or network
administrator, while your ISP will take care of it for your home connection.

B In the company you are likely to use the same IP address all of the time.
Your ISP, on the other hand, will only “lend” you an address for a certain
limited time; the next time you will get a different one. On the one hand this
enables your ISP to use fewer addresses than the number of its customers
(since not every customer is online all the time), and on the other hand this
is supposed to discourage you from offering services for which a constantly
changing IP address would be a nuisance.

B The IP addresses themselves do not fall from the sky, but are—as far as
possible—assigned with forethought, in order to keep the exchange of data
between different networks, or “routing”, straightforward. We will look at
this in more detail later on.

Computers usually have more than one IP address. The “loopback address” loopback address

127.0.0.1 is available on every computer and refers to that computer itself; it is not
accessible from the outside. A service that is bound to the 127.0.0.1 address can
only be accessed by clients that are running on the same machine.

B That sounds absurd and useless, but does in fact make eminent sense: For
example, you might be developing a web site that must be able to send mail
to users (say, containing activation links for user accounts). To test this on
your development machine, you could install a local mail server that only
accepts mail on the loopback address—which will be perfectly adequate for
your project while keeping you safe from being inundated with spam from
elsewhere on the Internet.

On computers featuring Ethernet or WiFi, the corresponding interfaces also have
IP addresses—at least if the computer is currently connected to the network. In
addition, nothing prevents you from assigning additional addresses to the net-
work interfaces for testing or specialised configurations.

The challenge consists of arranging for an arbitrary computer 𝑋 on the Internet
to be able to communicate with another arbitrary computer 𝑌, as long as it knows
𝑌’s IP address. (If 𝑋 is located in Britain and 𝑌 in Australia, it is not 100% obvious
how 𝑋’s bytes should reach 𝑌.) The magic word which makes this possible is
“routing”. And it works approximately like this: routing

• Your computer 𝑋 can find out 𝑌’s IP address (this is what the DNS is for).
Let’s assume it is 10.11.12.13.

• Computer 𝑋 can figure out that the IP address 10.11.12.13 is not on the same
local area network as its own (which is no wonder considering that 𝑌 is in
Australia). This means that computer 𝑋 cannot send data directly to com-
puter 𝑌 (big surprise).

Copyright © 2012 Linup Front GmbH

200 15 Linux Networking

• Computer 𝑋’s network configuration contains a “default route”, otherwisedefault route

known as a recipe for what to do with data that cannot be sent to their desti-
nation directly. This might look like “Send anything you can’t immediately
deliver on to computer 𝑍”. The computer 𝑍 is also called a “default gate-
way”.

• Computer 𝑍—possibly your DSL router—cannot deliver the data to com-
puter 𝑌 directly, either. However, it knows what to do with data that is not
addressed to computers like 𝑋 that are directly connected to itself, namely
to send it on to your ISP.

• This game continues across a few more levels until your data arrives at a
computer which knows that data addressed to 10.11.𝑥.𝑦 must be sent to the
Australian ISP (let’s call it “Billabong-Net”), so it is sent there.

• Billabong-Net knows (hopefully), how incoming data to 10.11.12.13 must be
forwarded to their ultimate destination. The particular computer 𝑌 may
be located at one of Billabong-Net’s customer’s, or one of that customer’s
customer’s, but if everything is configured correctly it will work out right.

• Any responses from 𝑌 to 𝑋 take a similar route back.

The important observation here is that the actual route that data take from com-
puter 𝑋 to computer 𝑌 is determined while the data is being transmitted. Com-
puter 𝑋 does not need to specify a complete list of intermediate destinations, but
relies on every intermediate destination doing the Right Thing. Conversely, ev-
ery computer only needs “local” knowledge and does not need to know what is
where on the whole Internet—which would be quite impossible.

B One of the properties of IP as a communication protocol is that the routing
can, in principle, change from one packet to the next (even if this usually
does not happen). This enables the Internet to react to congestion or con-
nection outages in a flexible manner.

B This is essentially similar to “snail mail”. You don’t need to know the exact
route your birthday card takes to reach Auntie Fran in Sydney; you sim-
ply put the correctly stamped envelope into your friendly neighbourhood
postbox.

At the end of the day this means that your Linux computer needs to know three
things: its own IP address, the set of addresses it can reach directly, and a default
gateway for the rest. The set of addresses that your computer can reach directly is
described by the IP address of your local network together with a “subnet mask”,subnet mask

which today is most commonly specified as a number.

B Imagine your computer has the IP address 192.168.178.111 within the local
network 192.168.178.0/24. Here, 24 is the subnet mask—it specifies that the
first 24 bits of your address (the first three octets, namely 192.168.178) ad-
dress the network itself. The final octet (or the last 8 bits to make up 32) is
available for local addresses. This means that all computers with addresses
from 192.168.178.0 to 192.168.178.255—if they exist at all—can be reached di-
rectly; the default gateway (which must have an address within the local
network) must be used to reach any other IP address.

B Actually, in our example the addresses 192.168.178.0 and 192.168.178.255

would not be available for computers since they have a special meaning,
but we only mention this for completeness.

You can in principle set these essential networking parameters—IP address,
subnet (mask), and default gateway—manually as part of your computer’s net-
work configuration. (The details depend on your distribution.) However, it is very

Copyright © 2012 Linup Front GmbH

15.1 Networking Basics 201

probable that your network provides a “DHCP server” which will make these pa-
rameters available to your computer without you having to worry about them.

Hence, if you want to add a Linux computer as a LAN client, it should normally
suffice to switch it on and to plug an Ethernet cable into the appropriate socket
or to select a WiFi network from the appropriate menu and possibly enter the
corresponding password. If there are any problems whatsoever, then call loudly
and persistently for your system or network administrator.

15.1.3 Names and the DNS

IP addresses are nice and important, but somewhat inconvenient to use. It would
be very aggravating if you had to enter (much less remember) the address 213.157.

7.75 to access the server offering the latest version of this manual. shop.linupfront.
com is that much handier.

The way to get to inconvenient IP addresses given convenient names (and
vice versa) is via the Domain Name System, or DNS. DNS is a globally distributed
database for host names, IP addresses, and various other items, and it can be
accessed via DNS servers (a. k. a. “name servers”). Your company or ISP should DNS servers

be running one (or, even better, two for redundancy) DNS server on your behalf.

B You can do it yourself if you want—based on Linux, of course—, and by
the time you’re running a reasonably-sized LAN for your company, with a
web and mail server, this is usually a good idea. However, that places us
dangerously close to LPIC-2 territory.

B The address of the DNS server(s) goes together with the other “essential
network parameters” from the previous section—IP address, subnet (mask),
default gateway—that every Linux machine ought to have.

As with IP addresses and routes, no single DNS server must have complete
knowledge of all existing names (there are much too many of those by now, any-
way). In fact, there is a hierarchy:

• The “root-level name servers” know about the part of a name on the very
right—like .de, .com, .tv, whatever—and know which name servers are in
charge of the content of these zones.

• The name servers for .de (by way of an example) know all the names of
the form something.de and can tell which name servers know about names
below those names.

• The name servers for a name like something.de (which are usually situated
at the company in question or their ISP) know the IP address for a name like
www.something.de and can supply it if required.

This means that to “resolve” a name like shop.linupfront.de, your computer first
asks a root-level name server for the name servers in charge of de. Then it asks
one of those name servers for the name servers in charge of linupfront.de. Finally
it asks a linupfront.de nameserver for the address of shop.linupfront.de.

B Actually it’s not “your computer” doing the work, it’s the DNS server your
computer is using. But that doesn’t detract from the principle.

Of course this is a fairly involved scheme, and this is why your system keeps any
answers around for a while. If you have found out that shop.linupfront.de corre-
sponds to the IP address 213.157.7.75, the assumption is that this will stay the same
for a while, so the resolution process is only repeated after that time has expired.

B The advantage of this scheme is that we at Linup Front are free to dispose
of names “below” linupfront.de and can add them to our DNS server as we
wish. Other people get them directly from there. It would be much more
of a hassle to have to petition the “Internet office” for a new name, and to
have to wait for it to be added to the official list. (Think of changes to the
land register and how long these usually take.)

Copyright © 2012 Linup Front GmbH

202 15 Linux Networking

15.1.4 IPv6

IP as a communications protocol has been around for something like 30 years, and
we have found out in the meantime that some assumptions that were made back
then must have been somewhat naive. For example, IPv4 (the current version
of the protocol) allows, in principle, 232, or approximately 4 billion, addresses.
Due to limitations in the protocol as well as various awkwardnesses with their
distribution, there are very few if any unused IPv4 addresses left—and in an age
where nearly everybody carries an Internet-enabled smartphone and even more
people would like to have one, this is a definite problem.

B There are ways of alleviating this problem—for example, not every single
Internet-enabled cellphone gets an IP address that is visible from every-
where on the Internet. Instead, the operators wall off their networks from
the actual Internet in order to be able to distribute more addresses (cue “net-
work address translation”, NAT). These methods are fairly disgusting and
do imply other problems.

IPv6, the designated successor to IPv41, has been available since the late 1990s.
IPv6 does away with various restrictions of IPv4, but ISPs are still somewhat re-
luctant to roll IPv6 out comprehensively. Linux does deal very well with IPv6,
and since you can quite happily run IPv4 and IPv6 in parallel, there is nothing
preventing you from setting up an IPv6-based infrastructure in your company (or
even your domestic LAN—many DSL routers support IPv6 by now). Here are
some of the more important properties of IPv6:

Extended address space Instead of 32-bit addresses, IPv6 uses 128-bit addresses,
in the expectation that this will suffice for the foreseeable future (chances
are fairly good). IPv6 addresses are notated by writing down chunks of two
bytes in hexadecimal (base 16), using a colon as the separator:

fe80:0000:0000:0000:025a:b6ff:fe9c:406a

Leading zeroes may be removed from every block of four digits:

fe80:0:0:0:25a:b6ff:fe9c:406a

Furthermore, at most one sequence of blocks of zeroes may be replaced by
“::”:

fe80::25a:b6ff:fe9c:406a

The loopback address, i. e., the moral equivalent to IPv4’s 127.0.0.1, is ::1.

Address assignment With IPv4, your ISP assigns you one IPv4 address or at most
a few (unless you are a really big company or another ISP—and even for
those, addresses are by now fairly scarce). If you need more addresses for
your computers you need to become devious. With IPv6, you are instead as-
signed a complete network, namely a “subnet prefix” that fixes only 48 or 56
of the possible 128 address bits. You are then free to assign 264 addresses
in each of a number of subnets, and this is probably more than you will be
able to use (according to IPv4, the whole Internet only uses 232 addresses—a
small fraction of this).

Simple configuration While with IPv4 a computer must be assigned a local IP
address—possibly with the aid of a DHCP server—, using IPv6 a computer
can assign itself an address that is suitable to communicate with other com-
puters in the immediate vicinity. With IPv6, a computer can also, without
DHCP, locate routers in the neighbourhood which are prepared to forward

1IPv5 never really existed.

Copyright © 2012 Linup Front GmbH

15.2 Linux As A Networking Client 203

data to the Internet. This avoids various problems with DHCP on IPv4. In-
cidentally, IPv6 does not use a “default route”.

Other improvements The format of IP datagrams was changed to enable more
efficient routing. In addition, IPv6 defines methods to change a network’s
subnet prefix much more easily than a network’s address could be changed
in IPv6—this is also an attempt to simplify routing. Furthermore, IPv6 sup-
ports encrypted networks (IPsec) and mobility where computers—think of
cell phones—can migrate from one network to another without changing
addresses or interrupting existing connections (“mobile IPv6”).

Compatibility The introduction of IPv6 only impacts IP—protocols like TCP and
UDP or the application protocols on top of those remain unchanged. As we
have mentioned, it is also possible to run IPv4 and IPv6 in parallel.

Exercises

C 15.1 [!1] Which medium access protocols (except Ethernet or IEEE-802.11)
do you know? Which communication protocols (except IP, TCP, and UDP)?
Which application protocols except those mentioned above?

C 15.2 [!1] How many useable IP addresses does the network 10.11.12.0/22

contain? (Subtract the first and last addresses because of their special mean-
ing.)

15.2 Linux As A Networking Client

15.2.1 Requirements

We have already outlined the essentials necessary to add a Linux-based computer
to an existing network as an (IPv4) client (the only use case pertinent to Linux
Essentials):

• An IP address for the computer itself

• A network address and subnet mask for the computer (so it can tell which
IP addresses are “local”)

• The address of a default gateway on the local network

• The address(es) of one (better two) DNS server(s).

In the ideal case your computer will obtain these settings automatically via DHCP
when it is booted, when the LAN cable is plugged in, or when you log into a
wireless network from a mobile system. If this is not the case, you must configure
these parameters yourself. The details depend on your distribution:

On Debian GNU/Linux and its derivative distributions, the network con-
figuration is stored in a file called /etc/network/interfaces. The format is
largely self-explanatory, and there is a commented example in /usr/share/

doc/ifupdown/examples/network-interfaces.gz. In a pinch, there is documenta-
tion in interfaces(5).

On the SUSE distributions, you configure networking parameters most
straightforwardly via YaST (see “Network Devices/Network Cards”). Oth-
erwise there are configuration files below /etc/sysconfig/network.

On Red Hat distributions and their derivatives, there are configuration files
in the /etc/sysconfig/network-scripts directory.

Copyright © 2012 Linup Front GmbH

204 15 Linux Networking

For short-term experiments you can also use the ifconfig command. Somethingifconfig

like

ifconfig eth0 192.168.178.111 netmask 255.255.255.0

assigns the IP address 192.168.178.111 to the network interface eth0 (Ethernet). The
local network is 192.168.178.0/24—the 255.255.255.0 is a roundabout method of
writing down the subnet mask (24). The default gateway (e. g, 192.168.178.1) isdefault gateway

configured using the route command:

route add -net default gw 192.168.178.1

These settings only persist until the next reboot!
The addresses of DNS servers are usually stored in the /etc/resolv.conf file,/etc/resolv.conf

which might look approximately like

/etc/resolv.conf

search example.com

nameserver 192.168.178.1

nameserver 192.168.178.2

(the “search example.com” will append “example.com” to any names specified without
a period—so if you use www, the name being actually looked up will instead be
“www.example.com”).

B If your system configures networking automatically—for instance when us-
ing WiFi—the content of /etc/resolv.conf is often overwritten without mercy.
Do check your distribution’s documentation to find out how and where to
configure name servers persistently.

15.2.2 Troubleshooting

If the simple approaches of joining the Internet (plugging in or connecting to a
WiFi network) do not work or if other problems occur—like interminable delays
when accessing web sites, or inexplicable connection breakdown—you should
consult a systems or network administrator or, generally speaking, somebody
who is more familiar with the subject than you are. (At least until you have passed
your LPIC-2 exams; at that point people will fetch you if they are in trouble.)

On the other hand, it always goes down well if you have excluded the most ob-
vious problems yourself or narrowed the error down somewhat. This may save
your administrator some work, or, if nothing else, lets you appear to your admin-
istrator like someone to be reckoned with rather than a complete rookie.

The rest of this section explains the most important troubleshooting tools and
how to use them.

ifconfig We just introduced the ifconfig command for network configuration.
ifconfig can also be used to query the setup of a network interface:

$ /sbin/ifconfig eth0

eth0 Link encap:Ethernet HWaddr 70:5a:b6:9c:40:6a

inet addr:192.168.178.130 Bcast:192.168.178.255�

� Mask:255.255.255.0

inet6 addr: 2002:4fee:5912:0:725a:b6ff:fe9c:406a/64�

� Scope:Global

inet6 addr: fe80::725a:b6ff:fe9c:406a/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:112603 errors:0 dropped:0 overruns:0 frame:0

TX packets:98512 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

Copyright © 2012 Linup Front GmbH

15.2 Linux As A Networking Client 205

RX bytes:102695538 (97.9 MiB) TX bytes:13169349 (12.5 MiB)

Interrupt:20 Memory:d7400000-d7420000

The most interesting bits include the various addresses:

• The first line of the output contains the “hardware” or “MAC address” of
the interface. It is assigned by the manufacturer of the interface (here, an
Ethernet interface).

• The second line contains the IP(v4) address assigned to the interface. On the
very right there is the subnet mask in the oldfashioned/tedious notation.

• The third and fourth lines specify various IPv6 addresses. The fourth line is
the local address that the computer assigned itself, while the third contains
a subnet prefix which would theoretically be reachable from the Internet.

B If you look closely you will recognise the MAC address of the interface
in the second half of each of the IPv6 addresses.

The “UP” at the start of the fifth line denotes that the interface is actually switched
on.

If you execute ifconfig without any parameters, it outputs information about
all active network interfaces on the computer. When the -a option is given, it also
shows the ones that are currently not active.

ping You can use the ping command for low-level (IP) connectivity checks be-
tween your computer and others. ping uses the control protocol, ICMP, to ask
another computer for “signs of life”. If these indications arrive back at your com-
puter, you know that (a) your computer can send data to the other computer, and
(b) the other computer can send data to your computer (the one does not neces-
sarily imply the other).

In the simplest case, you invoke ping with the name of the computer you’d like
to communicate with:

$ ping fritz.box

PING fritz.box (192.168.178.1) 56(84) bytes of data.

64 bytes from fritz.box (192.168.178.1): icmp_req=1 ttl=64 time=3.84 ms

64 bytes from fritz.box (192.168.178.1): icmp_req=2 ttl=64 time=5.09 ms

64 bytes from fritz.box (192.168.178.1): icmp_req=3 ttl=64 time=3.66 ms

64 bytes from fritz.box (192.168.178.1): icmp_req=4 ttl=64 time=3.69 ms

64 bytes from fritz.box (192.168.178.1): icmp_req=5 ttl=64 time=3.54 ms

Stop the program using Ctrl + c …
--- fritz.box ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4006ms

rtt min/avg/max/mdev = 3.543/3.967/5.095/0.575 ms

Everything is in order here: All five transmitted packets have arrived back, the
sequence is correct, and the transmission times make sense for a local network. If
instead you see nothing for a while before

From 192.168.178.130 icmp_seq=1 Destination Host Unreachable

From 192.168.178.130 icmp_seq=2 Destination Host Unreachable

From 192.168.178.130 icmp_seq=3 Destination Host Unreachable

appears, something is fishy—the target computer cannot be contacted.
If you cannot connect to a remote computer on the Internet, the problem can

in principle be anywhere between you and the remote computer. For a systematic
approach you could use the following tactics:

• Use ping to check whether you can reach the loopback interface, 127.0.0.1. If
that doesn’t work, something is very wrong with your computer.

Copyright © 2012 Linup Front GmbH

206 15 Linux Networking

• Use ping to check whether you can reach the address of the network inter-
face (Ethernet, WLAN, …) you’re currently using (or believe you are using)
to access the Internet. You can find that address, if required, by means of
something like

$ /sbin/ifconfig eth0

That ought to work, too—if not, then there is a local problem.

• Use ping to check whether you can reach your local default gateway. (If you
don’t know that address by heart, you can find out about it using route. In

$ /sbin/route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

default fritz.box 0.0.0.0 UG 0 0 0 eth0

link-local * 255.255.0.0 U 1000 0 0 lo

192.168.178.0 * 255.255.255.0 U 0 0 0 eth0

the default entry below Destination tells you what to use—“ping fritz.box”
here.) If that doesn’t work and you’re getting messages like

Destination Host Unreachable

then there is a problem with your local network. If you can, ask a colleague
who is just accessing the Internet, or try another computer: If everything
seems to be OK there, then again your computer is likely to be the culprit.
Otherwise—and quite likely in that case, too—it is time for the system ad-
ministrator.

B For example, your default route might be incorrect and point to the
wrong computer. (This would be more likely when networking has
been configured manually.) That would be unlikely to impact the users
of other computers, where the configuration is probably correct.

• If you can in fact reach the default gateway correctly, then the problem is
either outside your LAN, somewhere on the Internet (and may be not only
out of your reach but even out of that of your administrator), or somewhere
farther up the “protocol stack”. For example, it might be possible for you to
reach a remote web server using ping, but your (company?) Internet access
might not allow direct access to the Web because you are supposed to use a
“proxy server” (and forgot about configuring it). Your system administrator
will be able to help.

A network connection that sometimes works and sometimes doesn’t (kink in
the cable? rodent damage?) can be tested using “ping -f”. Instead of sending one
packet per second as usual, ping sends data as fast as it can. It outputs a dot for
every packet sent and one backspace character for every packet received. If you’re
losing packets, there will be a lengthening line of dots.

B If you’re not root but an ordinary user, you must make do with a minimal
interval of 0.2 seconds between two packets sent. You may only flood the
network if you are an administrator.

To check IPv6 connections, you must use the ping6 command instead of ping:

$ ping6 ::1

Copyright © 2012 Linup Front GmbH

15.2 Linux As A Networking Client 207

dig The dig command is used to test DNS name resolution. Unless you specify
otherwise, it tries to find an IP address corresponding to a name given on the
command line:

$ dig www.linupfront.de

; <<>> DiG 9.8.1-P1 <<>> www.linupfront.de

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 34301

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;www.linupfront.de. IN A

;; ANSWER SECTION:

www.linupfront.de. 3600 IN CNAME s0a.linupfront.de.

s0a.linupfront.de. 3600 IN A 31.24.175.68

;; Query time: 112 msec

;; SERVER: 127.0.0.1#53(127.0.0.1)

;; WHEN: Thu Mar 1 16:06:06 2012

;; MSG SIZE rcvd: 69

This (very verbose) output tells us in the “QUESTION SECTION” that we were
looking for www.linupfront.de (not that we didn’t know that already). The “AN-
SWER SECTION” lets on that actually no IP address corresponds to www.linupfront.

de, but that www.linupfront.de is in fact a “nickname” for the computer called s0a.

linupfront.de (a popular approach). s0a.linupfront.de, however, has the address
31.24.175.68. Finally, the last block tells us that this response came from the DNS
server running on 127.0.0.1.

If there is no answer for some time and then something like

; <<>> DiG 9.8.1-P1 <<>> www.linupfront.de

;; global options: +cmd

;; connection timed out; no servers could be reached

appears, then there is something rotten in the state of Denmark. Either your set-
tings in /etc/resolv.conf are incorrect, or the name server doesn’t do what it should.

B You can ask a specific name server by mentioning it on the command line:

$ dig www.linupfront.de @fritz.box Frage fritz.box

Of course resolving this name should not entail an expensive DNS query
(or else you might have a chicken-egg problem); when in doubt, you can
always specify an IP address directly:

$ dig www.linupfront.de @192.168.178.1

B If you know your way around DNS, you can use dig to look for RR types
other than A records. Just tell dig on the command line what you want:

$ dig linupfront.de mx

To find the name belonging to a given IP address (if any), you must specify the
-x option:

Copyright © 2012 Linup Front GmbH

208 15 Linux Networking

$ dig +short -x 31.24.175.68

s0a.linupfront.de.

(With the +short option, dig produces very brief output.)
Of course dig can do a lot more, but most of that is only of interest to people

who need to configure name servers or keep them running. If you can’t resist,
there is ample detail in dig(1).

netstat The netstat command is a kind of Swiss army knife which provides all
sorts of information about your computer and its network connection. If you just
execute

$ netstat

you get a list of all active connections. This includes not only TCP connection, but
also local connections via Unix domain sockets, which are as stiflingly voluminous
as they are utterly boring. It is more interesting to use something like

$ netstat -tl

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 ceol:domain *:* LISTEN

tcp 0 0 ceol-eth.fri:domain *:* LISTEN

tcp 0 0 *:ssh *:* LISTEN

tcp 0 0 ceol:ipp *:* LISTEN

tcp 0 0 ceol:postgresql *:* LISTEN

tcp 0 0 ceol:smtp *:* LISTEN

�����

to obtain a list of TCP ports where services are listening for incoming connections
on this computer.

B TCP and UDP use “ports” to allow the same computer to offer or access sev-
eral services at the same time. Many protocols use fixed port numbers—a
list is in the /etc/services file.

This example output tells you that, on the address ceol, the computer provides
a DNS server (service domain), a CUPS server for printing (service ipp) and a mail
server (service smtp). It even offers the ssh service (secure shell) on all configured
addresses.

B “netstat -tl” is an important troubleshooting tool in connection with networ
services. If a service does not appear here but you think it actually ought to,
that indicates that something is wrong with its configuration—possibly it
does not use the correct address/port, or something went catastrophically
wrong when the service was started so it is not running at all.

B The “-u” option in place of “-t” displays the UDP-based services, and “-p”
will also display the name and PID of the process providing the service. The
latter feature is only available if you invoke the command as the root user.

B The “-n” option will display everything with IP addresses and port numbers
instead of names. This is sometimes more revealing, at least as long as you
have a working knowledge of the port numbers.

$ netstat -tln

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

Copyright © 2012 Linup Front GmbH

15.2 Linux As A Networking Client 209

tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN

tcp 0 0 192.168.178.130:53 0.0.0.0:* LISTEN

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN

�����

“netstat -s” shows you statistics like

Ip:

145845 total packets received

8 with invalid addresses

0 forwarded

0 incoming packets discarded

145837 incoming packets delivered

138894 requests sent out

16 outgoing packets dropped

172 dropped because of missing route

Icmp:

30 ICMP messages received

0 input ICMP message failed.

�����

And “netstat -r” is essentially the same as “route” (without parameters).

Exercises

C 15.3 [!2] Use ping to make sure you can reach a well-known server on the
Internet (perhaps www.google.com).

C 15.4 [1] Use dig to check which IP address corresponds to www.heise.de.

C 15.5 [2] dig’s +trace option causes the program to document the complete
lookup chain for a name, starting from the root-level name servers. Try that
for some interesting names and check the intermediate steps.

C 15.6 [2] Which network services does your computer offer? Which of those
are reachable from other computers?

Commands in this Chapter

dig Searches DNS for information (very convenient) dig(1) 206
ifconfig Configures network interfaces ifconfig(8) 203, 204
netstat Displays information about network connections, servers, routing

netstat(8) 208
ping Checks basic network connectivity using ICMP ping(8) 205
ping6 Checks basic network connectivity (for IPv6) ping(8) 206
route Manages the Linux kernel’s static routing table route(8) 203

Copyright © 2012 Linup Front GmbH

210 15 Linux Networking

Summary

• There are three kinds of network protocols: medium access protocols, com-
munication protocols, and application protocols.

• In a “protocol stack”, each protocol only interacts with the protocols imme-
diately above and below.

• TCP/IP contains the communication protocols IP, TCP (reliable and connection-
oriented), and UDP (unreliable and connectionless), the control protocol
ICMP, and a multitude of application protocols based on TCP or UDP.

• Computers on the Internet have unique IP addresses.
• Routing allows communication between computers that are not directly

connected to each other.
• To connect to a network, a Linux computer requires an IP address, a subnet

address with a mask, a default gateway, and the address of at least one DNS
server.

• The DNS is a distributed database that maps host names to IP addresses
and vice versa (among other things).

• IPv6 is the successor standard to IPv4, which removes various limitations
and incorporates improvements.

• ifconfig and route are used for the manual configuration of networking. Dis-
tributions use various schemes for persistent networking configuration.

• The ifconfig, ping, dig, and netstat programmes are used for network trou-
bleshooting.

Copyright © 2012 Linup Front GmbH

A
Sample Solutions

This appendix contains sample solutions for selected exercises.

1.1 Your author first cut his teeth on a “real” computer in 1982, using an Apple
II plus. That machine had a 6502 processor with the awesome clock frequency of
1 MHz and the inconceivable (at the time) RAM capacity of 48 KiB. There was no
hard disk, but there were 5¼-inch floppy disks storing 143 KiB of data each – on
each side. You were really supposed to use only one side of a “diskette”, but with
care or a special punch it was possible to cut a “write-protection notch” into the
opposite side of the plastic sleeve to be able to flip the disk over. (At $20 per box
of 10 disks this was badly required.)

2.1 A good source is http://oreilly.com/catalog/opensources/book/appa.html. Do
also read http://www.cs.vu.nl/~ast/reliable-os/.

2.2 ftp.kernel.org has a file called linux-0.01.tar.gz.

2.3

1. False. GPL software may be sold for arbitrary amounts of money, as long as
the buyer receives the source code (etc.) and the GPL rights.

2. False. Companies are encouraged to develop products based on GPL code,
but these products must also be distributed under the GPL. Of course a
company is not required to give away their product to the world at large—it
only needs to make the source code available to its direct customers who
bought the executables, but these may make full use of their rights to the
software under the GPL.

3. True.

4. False. You may use a program freely without having accepted the GPL (it
is not a contract). The GPL governs just the redistribution of the software,
and you can peruse the GPL before doing that. (Interactive programs are
supposed to call your attention to the GPL.) The observation is true that
only those conditions can be valid that the software recipient could know
before the purchase of the product; since the GPL gives to the recipient rights
that he would otherwise not have had at all—such as the right to distribute
original or modified code—this is not a problem: One may ignore the GPL
completely and still do all with the software that copyright allows for. This
is a marked difference to the EULAs of proprietary programs; these try to es-
tablish a contract relationship in which the buyer explicitly gives away rights

Copyright © 2012 Linup Front GmbH

212 A Sample Solutions

that he would otherwise have been entitled to by copyright law (such as the
right to inspect the program to find out its structure). This of course only
works before the purchase (if at all).

3.2 In both cases, the message “Login incorrect” appears, but only after the pass-
word has been prompted for and entered. This is supposed to make it difficult
to guess valid user names (those that do not elicit an error message right away).
The way the system is set up, a “cracker” cannot tell whether the user name was
invalid already, or whether the password was wrong, which makes breaking into
the system a lot more difficult.

4.1 In the login shell, the output is “-bash”, whereas in the “subshell” it is “bash”.
The minus sign at the beginning tells the shell to behave as a login shell rather
than a “normal” shell, which pertains to the initialisation.

4.2 alias is an internal command (does not work otherwise). rm is an external
command. Within bash, echo and test are internal commands but are also avail-
able as external commands (executable program files), since other shells do not
implement them internally. In bash’s case, they are internal mostly for reasons of
efficiency.

5.2 Try “apropos process” or “man -k process”.

5.5 The format and tools for info files were written in the mid-1980s. HTML
wasn’t even invented then.

6.1 In Linux, the current directory is a process attribute, i. e., every process has
its own current directory (with DOS, the current directory is a feature of the drive,
which of course is inappropriate in a multi-user system). Therefore cd must be
an internal command. If it was an external command, it would be executed in a
new process, change that process’s current directory and quit, while the invoking
shell’s current directory would remain unchanged throughout the process.

6.4 If a file name is passed to ls, it outputs information about that file only. With
a directory name, it outputs information about all the files in that directory.

6.5 The -d option to ls does exactly that.

6.6 This could look approximately like so:

$ mkdir -p grd1-test/dir1 grd1-test/dir2 grd1-test/dir3

$ cd grd1-test/dir1

$ vi hello

$ cd

$ vi grd1-test/dir2/howdy

$ ls grd1-test/dir1/hallo grd1-test/dir2/howdy

grd1-test/dir1/hello

grd1-test/dir2/howdy

$ rmdir grd1-test/dir3

$ rmdir grd1-test/dir2

rmdir: grd1-test/dir2: Directory not empty

To remove a directory using rmdir, it must be empty (except for the entries “.” and
“..”, which cannot be removed).

Copyright © 2012 Linup Front GmbH

A Sample Solutions 213

6.7 The matching names are, respectively

(a) prog.c, prog1.c, prog2.c, progabc.c

(b) prog1.c, prog2.c

(c) p1.txt, p2.txt, p21.txt, p22.txt

(d) p1.txt, p21.txt, p22.txt, p22.dat

(e) all names

(f) all names except prog (does not contain a period)

6.8 “ls” without arguments lists the content of the current directory. Directories
in the current directory are only mentioned by name. “ls” with arguments, on the
other hand (and in particular “ls *”—ls does not get to see the search pattern, after
all) lists information about the given arguments. For directories this means that
the content of the directories is listed as well.

6.9 The “-l” file (visible in the output of the first command) is interpreted as an
option by the ls command. Thus it does not show up in the output of the second
command, since ls with path name arguments only outputs information about
the files specified as arguments.

6.10 If the asterisk matched file names starting with a dot, the recursive dele-
tion command “rm -r *” would also apply to the “..” entry of a directory. This
would delete not just subdirectories of the current directory, but also the enclosing
directory and so on.

6.11 Here are the commands:

$ cd

$ cp /etc/services myservices

$ mv myservices src.dat

$ cp src.dat /tmp

$ rm src.dat /tmp/src.dat

6.12 When you rename a directory, all its files and subdirectories will automat-
ically be “moved” so as to be within the directory with its new name. An -R to mv

is therefore completely unnecessary.

6.13 The simple-minded approach—something like “rm -file”—fails because rm

misinterprets the file name as a sequence of options. The same goes for commands
like “rm "-file"” or “rm '-file'”. The following methods work better:

1. With “rm ./-file”, the dash is no longer at the start of the parameter and
thus no longer introduces an option.

2. With “rm -- -file”, you tell rm that there are definitely no options after the
“--” but only path names. This also works with many other programs.

6.14 During the replacement of the “*”, the “-i” file is picked up as well. Since
the file names are inserted into the command line in ASCII order, rm sees a param-
eter list like

-i a.txt b.jpg c.dat or whatever

and considers the “-i” the option -i, which makes it remove files only with confir-
mation. We hope that this is sufficient to get you to think things over.

Copyright © 2012 Linup Front GmbH

214 A Sample Solutions

6.15 If you edit the file via one link, the new content should also be visible via
the other link. However, there are “clever” editors which do not overwrite your
file when saving, but save a new file and rename it afterwards. In this case you
will have two different files again.

6.16 If the target of a symbolic link does not exist (any longer), accessing that
“dangling” link will lead to an error message.

6.17 To itself. You can recognise the file system root directory by this.

6.18 On this system, the /home directory is on a separate partition and has inode
number 2 on that partition, while the / directory is inode number 2 on its own
file system. Since inode numbers are only unique within the same physical file
system, the same number can show up for different files in “ls -i” output; this is
no cause for concern.

6.19 Hard links are indistinguishable, equivalent names for the same file (or,
hypothetically, directory). But every directory has a “link” called “..” referring to
the directory “above”. There can be just one such link per directory, which does
not agree with the idea of several equivalent names for that directory. Another
argument against hard links on directories is that for every name in the file system
tree there must be a unique path leading to the root directory (/) in a finite number
of steps. If hard links to directories were allowed, a command sequence such as

$ mkdir -p a/b

$ cd a/b

$ ln .. c

could lead to a loop.

6.20 The reference counter for the subdirectory has the value 2 (one link results
from the name of the subdirectory in ~, one from the “.” link in the subdirectory
itself). If there were additional subdirectories within the directory, their “..” links
would increment the reference counter beyond its minimum value of 2.

6.21 Hard links need hardly any space, since they are only additional directory
entries. Symbolic links are separate files and need one inode at least (every file
has its own inode). Also, some space is required to store the name of the target
file. In theory, disk space is assigned to files in units of the file system’s block size
(1 KiB or more), but there is a special exception in the ext2 and ext3 file systems
for “short” symbolic links (smaller than approximately 60 bytes), which can be
stored within the inode itself and do not require a full data block. More advanced
file systems such as the Reiser file system can handle short files of any type very
efficiently, thus the space required for symbolic links ought to be negligible.

6.22 One possible command could be “find / -size +1024k -print”.

6.23 The basic approach is something like

find . -maxdepth 1 ⟨tests⟩ -ok rm '{}' \;

The ⟨tests⟩ should match the file as closely as possible. The “-maxdepth 1” option
restricts the search to the current directory (no subdirectories). In the simplest
case, use “ls -i” to determine the file’s inode number (e.g., 4711) and then use

find . -maxdepth 1 -inum 4711 -exec rm -f '{}' \;

to delete the file.

Copyright © 2012 Linup Front GmbH

A Sample Solutions 215

6.24 Add a line like

find /tmp -user $LOGNAME -type f -exec rm '{}' \;

or—more efficiently—

find /tmp -user $LOGNAME -type f -print0 \

| xargs -0 -r rm -f

to the file .bash_logout in your home directory. (The LOGNAME environment variable
contains the current user name.)

6.25 Use a command like ”‘locate '*/README'”’. Of course, something like ”‘find
/ -name README”’ would also do the trick, but it will take a lot longer.

6.26 Immediately after its creation the new file does not occur in the database
and thus cannot be found (you need to run updatedb first). The database also
doesn’t notice that you have deleted the file until you invoke updatedb again.—It
is best not to invoke updatedb directly but by means of the shell script that your
distribution uses (e. g., /etc/cron.daily/find on Debian GNU/Linux). This ensures
that updatedb uses the same parameters as always.

6.27 slocate should only return file names that the invoking user may access.
The /etc/shadow file, which contains the users’ encrypted passwords, is restricted
to the system administrator (see Linux Administration I).

7.1 The regular expression 𝑟+ is a mere abbreviation of 𝑟𝑟*, so we could do with-
out +. Things are different with ?, for which there is no convenient substitute,
at least if we must assume (as in grep vs. egrep) that we cannot substitute 𝑟? by
\(\|𝑟\) (GNU grep supports the synonymous 𝑟{,1}—see Table 7.1—but this is not
supported by the grep implementations of the traditional Unix vendors.

7.2 You want a sample solution for this? Don’t be ridiculous.—Well, if you insist
…

egrep "\<king('s daughter)?\>" frog.txt

7.3 One possibility might be

grep :/bin/bash$ /etc/passwd

7.4 We’re looking for words starting with a (possibly empty) sequence of conso-
nants, then there is an “a”, then possibly consonants again, then an “e”, and so on.
We must take care, in particular, not to let extra vowels “slip through”. The result-
ing regular expression is fairly unsavoury, so we allow ourselves some notational
simplification:

$ k='[âeiou]*'

$ grep -i $̂{k}a${k}e${k}i${k}o${k}u${k}$ /usr/share/dict/words

abstemious

abstemiously

abstentious

acheilous

acheirous

acleistous

affectious

annelidous

Copyright © 2012 Linup Front GmbH

216 A Sample Solutions

arsenious

arterious

bacterious

caesious

facetious

facetiously

fracedinous

majestious

(You may look up the words on your own time.)

7.5 Try

egrep '(\<[A-Za-z]{4,}\>).*\<\1\>' frog.txt

We need egrep for the back reference. The word brackets are also required (try it
without them!).

8.1 A (probable) explanation is that the ls program works roughly like this:

Read directory information to list 𝑙;
if (option -U not specified) {

Sort the entries of 𝑙;
}

Write 𝑙 to standard output;

That is, everything is being read, then sorted (or not), and then output.
The other explanation is that, at the time the filelist entry is being read, there

has not in fact been anything written to the file to begin with. For efficiency, most
file-writing programs buffer their output internally and only call upon the oper-
ating system to write to the file if a substantial amount of data has been collected
(e. g. 8192 bytes). This can be observed with commands that produce very much
output relatively slowly; the output file will grow by 8192 bytes at a time.

8.2 When ls writes to the screen (or, generally, a “screen-like” device), it formats
the output differently from when it writes to a “real” file: It tries to display several
file names on the same line if the file names’ length permits, and can also colour
the file names according to their type. When output is redirected to a “real” file,
just the names will be output one per line, with no formatting.

At first glance this seems to contradict the claim that programs do not know
whether their output goes to the screen or elsewhere. This claim is correct in the
normal case, but if a program is seriously interested in whether its output goes
to a screen-like device (a “terminal”) it can ask the system. In the case of ls, the
reasoning behind this is that terminal output is usually looked at by people who
deserve as much information as possible. Redirected output, on the other hand, is
processed by other programs and should therefore be simple; hence the limitation
to one file name per line and the omission of colors, which must be set up using
terminal control characters which would “pollute” the output.

8.3 The shell arranges for the output redirection before the command is invoked.
Therefore the command sees only an empty input file, which usually does not lead
to the desired result.

8.4 The file is read from the beginning, and all that is read is appended to the
file at the same time, so that it grows until it takes up all the free space on the disk.

Copyright © 2012 Linup Front GmbH

A Sample Solutions 217

8.5 You need to redirect standard output to standard error output:

echo Error >&2

8.6 There is nothing wrong in principle with

… | tee foo | tee bar | …

However, it is easier to write

… | tee foo bar | …

See also tee’s documentation (man page or info page).

8.7 Pipe the list of file names through “cat -b”.

8.8 One method would be “head -n 13 | tail -n 1”.

8.10 tail notices it, emits a warning, and continues from the new end of file.

8.11 The tail window displays

Hello

orld

The first line results from the first echo; the second echo overwrites the complete
file, but “tail -f” knows that it has already written the first six characters of the
file (“Hello” and a newline character)—it just waits for the file to become longer,
and then outputs whatever is new, in particular, “orld” (and a newline character).

8.14 The line containing the name “de Leaping” is sorted wrongly, since on that
line the second field isn’t really the first name but the word “Leaping”. If you look
closely at the examples you will note that the sorted output is always correct—
regarding “Leaping”, not “Gwen”. This is a strong argument for the second type
of input file, the one with the colon as the separator character.

8.15 You can sort the lines by year using “sort -k 1.4,1.8”. If two lines are equal
according to the sort key, sort makes an “emergency comparison” considering the
whole line, which in this case leads to the months getting sorted correctly within
every year. If you want to be sure and very explicit, you could also write “sorkt -k

1.4,1.8 -k 1.1,1.2”.

8.19 Use something like

cut -d: -f 4 /etc/passwd | sort -u | wc -l

The cut command isolates the group number in each line of the user database.
“sort -u” constructs a sorted list of all group numbers containing each group num-
ber exactly once. Finally, “wc -l” counts the number of lines in that list. The result
is the number of different primary groups in use on the system.

9.1 For example:

1. %d-%m-%Y

2. %y-%j (WK%V)

3. %Hh%Mm%Ss

Copyright © 2012 Linup Front GmbH

218 A Sample Solutions

9.2 We don’t know either, but try something like “TZ=America/Los_Angeles date”.

9.4 If you change an environment variable in the child process, its value in the
parent process remains unmodified. There are ways and means to pass informa-
tion back to the parent process but the environment is not one.

9.5 Start a new shell and remove the PATH variable from the environment (with-
out deleting the variable itself). Try starting external programs.—If PATH does not
exist at all, the shell will not start external programs.

9.6 Unfortunately we cannot offer a system-independent sample solution; you
need to see for yourself (using which).

9.7 Using whereis, you should be able to locate two files called /usr/share/man/

man1/crontab.1.gz and /usr/share/man/man5/crontab.5.gz. The former contains the doc-
umentation for the actual crontab command, the latter the documentation for the
format of the files that crontab creates. (The details are irrelevant for this exercise;
see Advanced Linux.)

9.8 bash uses character sequences of the form “!⟨character⟩” to access previous
commands (an alternative to keyboard functions such as Ctrl + r which have mi-
grated from the C shell to bash). The “!"” character sequence, however, counts as
a syntax error.

9.9 None.

9.10 If the file name is passed as a parameter, wc insists on outputting it together
with the number of lines. If wc reads its standard input, it only outputs the line
count.

9.11 Try something like

#!/bin/bash

pattern=$1

shift

�����

for f

do

grep $pattern "$f" && cp "$f" backup

done

After the shift, the regular expression is no longer the first parameter, and that
must be taken into account for “for f”.

9.12 If the -f file test is applied to a symbolic link, it always applies to the file (or
directory, or whatever) that the link refers to. Hence it also succeeds if the name
in question is really just a symbolic link. (Why does this problem not apply to
filetest2?)

10.2 You can find out about this using something like

ls /bin /sbin /usr/bin /usr/sbin | wc -l

Alternatively, you can hit Tab twice at a shell prompt—the shell will answer
something like

Copyright © 2012 Linup Front GmbH

A Sample Solutions 219

Display all 2371 possibilities? (y or n)

and that is—depending on PATH—your answer. (If you are logged in as a normal—
non-privileged—user, the files in /sbin and /usr/sbin will not normally be included
in the total.)

10.3 Use “grep ⟨pattern⟩ *.txt /dev/null” instead of “grep ⟨pattern⟩ *.txt”. Thus
grep always has at least two file name parameters, but /dev/null does not otherwise
change the output.—The GNU implementation of grep, which is commonly found
on Linux, supports an -H option which does the same thing but in a non-portable
manner.

10.4 With cp to an existing file, the file is opened for writing and truncated to
length 0, before the source data is written to it. For /dev/null, this makes the data
disappear. With mv to an existing file, the target file is first removed—and that is
a directory operation which, disregarding the special nature of /dev/null, simply
removes the name null from the directory /dev and creates a new file called null

with the content of foo.txt in its place.

10.6 It is inadvisable because firstly it doesn’t work right, secondly the data in
question isn’t worth backing up anyway since it is changing constantly (you would
be wasting lots of space on backup media and time for copying), and thirdly be-
cause such a backup could never be restored. Uncontrolled write operations to,
say, /proc/kcore will with great certainty lead to a system crash.

11.1 Because AA is shorter than *2A.

11.2 The main problem is representing the asterisk. In the simplest case you
could write something like “A*12B*4*A”. Of course compression suffers by repre-
senting the single asterisk by three characters; you could institute an exception to
let, for example, ** stand for a single asterisk, but this makes the decompression
step more complicated.

11.3 Use “ls -l >content” and “tar -cvf content.tar content”. You will notice that
the archive is considerably bigger than the original. This is due to the metadata in
the archive. tar does not compress; it archives. To create an archive (a file) from a
single file is not really a workable idea.

11.4 For example, enter “touch file{1,2,3}” and “tar -rvf content.tar file*”.

11.5 Unpack the archive using “tar -xvf content.tar”.

11.6 If you want to unpack etc-backup.tar on the other computer (e. g., because
you want to see what is in there) and the archive contains absolute path names, the
data will not be written to a subdirectory etc of the current directory, but they end
up in the /etc directory of the remote computer. This is very likely not what you
had in mind. (Of course you should take care not to unpack an archive containing
relative path names while / is your current directory.)

11.7 If you want to use gzip, enter “gzip -9 contents.tar”.

11.8 Take care: To handle gzip-compressed tar archives, tar requires the -z op-
tion: “tar -tzf contents.tar.gz”. To restore the original archive, you need the “gunzip
contents.tar.gz” command.

Copyright © 2012 Linup Front GmbH

220 A Sample Solutions

11.9 Try “tar -cvzf /tmp/homearchive.tar ~”.

11.11 unzip offers to ignore the file in the archive, to rename it, or to overwrite
the existing file.

11.12 Try something like

$ unzip files.zip "a/*" -x "*/*.c"

12.1 A simple su (without /bin/ in front) would in principle work just as well.
However, it makes sense to get used to /bin/su because it protects you better against
“Trojan horses”: A devious user could place a program called su in their $PATH

such that it is found before /bin/su. Then they call you to their machine because
of some feigned problem. You say to yourself “I’ll have this fixed in no time, I’ll
just borrow this terminal session for a moment to become root”, innocuously call
“su”, and your devious user’s program asks you for the root password just like the
genuine su would. Except that it saves the password to some file, outputs an error
message, and removes itself. You are likely to assume that you made a typo, call
“su” again, get the genuine program, and everything is fine from here—except
that your devious user now knows the root password. If you use “/bin/su” in the
first place, this attack isn’t as straightforward.

12.2 Using su, any arbitrary user can obtain administrator privileges simply by
virtue of knowing the root password. With sudo, however, you will only be suc-
cessful if you are on sudo’s list of authorised users. Hence, sudo does not ask you for
the password to figure out whether you are allowed to be root, but to establish that
you are yourself. (Someone else might have taken over your computer while you
have stepped out for a moment.) Your own password works for this just as well (or
even better) than root’s. sudo is particularly useful if you share the system admin-
istrator job with several colleagues, because then nobody needs to know the actual
root password—you can assign something very long and complicated and place
it in a sealed envelope in the safe after the computer has been installed (for emer-
gencies). With su, all administrators need to know the password, which makes
changing it difficult. (The SUSE distributions use the root password with sudo, by
default, and they even seem to be proud of that type of brain damage.)

12.7 Here is the RPM variant:

$ rpm --query --all | wc -l

And on a Debian-like system you should use something like

$ dpkg --list | grep ^ii | wc -l

13.1 By their respective numerical UIDs and GIDs.

13.2 This works but is not necessarily a good idea. As far as the system is con-
cerned, the two are a single user, i. e., all files and processes with that UID belong
to both user names.

13.3 A pseudo-user’s UID is used by programs in order to obtain particular well-
defined access rights.

Copyright © 2012 Linup Front GmbH

A Sample Solutions 221

13.4 Whoever is in group disk has block-level read and write permission to the
system’s disks. With knowledge of the file system structure it is easy to make a
copy of /bin/sh into a SUID root shell (Section 14.4) by changing the file system
metadata directly on disk. Thus, group disk membership is tantamount to root

privileges; you should put nobody into the disk group whom you would not want
to tell the root password outright.

13.5 You will usually find an “x”. This is a hint that the password that would
usually be stored there is indeed stored in another file, namely /etc/shadow, which
unlike the former file is readable only for root.

13.6 There are basically two possibilities:

1. Nothing. In this case the system should turn you away after you entered
your password, since no user account corresponds to the all-uppercase user
name.

2. From now on, the system talks to you in uppercase letters only. In this case
your Linux system assumes that you are sitting in front of an absolutely
antediluvial terminal (1970s vintage or so) that does not support lowercase
letters, and kindly switches its processing of input and output data such that
uppercase letters in the input are interpreted as lowercase, and lowercase
letters in the output are displayed as uppercase. Today this is of limited
benefit (except if you work in a computer museum), and you should log out
as quickly again as possible before your head explodes. Since this behaviour
is so atavistic, not every Linux distribution goes along with it, though.

13.7 Use the passwd command if you’re logged in as user joe, or “passwd joe” as
root. In joe’s entry in the /etc/shadow file there should be a different value in the
second field, and the date of the last password change (field 3) should show the
current date (in what unit?)

13.8 As root, you set a new password for him using “passwd dumbo”, as you cannot
retrieve his old one even though you are the administrator.

13.9 Use the command “passwd -n 7 -m 14 -w 2 joe”. You can verify the settings
using “passwd -S joe”.

13.10 Use the useradd command to create the user, “usermod -u” to modify the
UID. Instead of a user name, the files should display a UID as their owner, since
no user name is known for that UID …

13.11 For each of the three user accounts there should be one line in /etc/passwd

and one in /etc/shadow. To work with the accounts, you do not necessarily need a
password (you can use su as root), but if you want to login you do. You can create
a file without a home directory by placing it in /tmp (in case you forgot—a home
directory for a new user would however be a good thing).

13.12 Use the userdel command to delete the account. To remove the files, use
the “find / -uid ⟨UID⟩ -delete” command.

13.13 If you use “usermod -u”, you must reassign the user’s file to the new UID,
for example by means of “find / -uid ⟨UID⟩ -exec chown test1 {} \;” or (more effi-
ciently) “chown -R --from=⟨UID⟩ test1 /”. In each case, ⟨UID⟩ is the (numerical) for-
mer UID.

13.14 You can either edit /etc/passwd using vipw or else call usermod.

Copyright © 2012 Linup Front GmbH

222 A Sample Solutions

13.15 Groups make it possible to give specific privileges to groups [sic!] of users.
You could, for example, add all HR employees to a single group and assign that
group a working directory on a file server. Besides, groups can help organise
access rights to certain peripherals (e. g., by means of the groups disk, audio, or
video).

13.16 Use the “mkdir ⟨directory⟩” command to create the directory and “chgrp
⟨groupname⟩ ⟨directory⟩” to assign that directory to the group. You should also
set the SGID bit to ensure that newly created files belong to the group as well.

13.17 Use the following commands:

groupadd test

gpasswd -a test1 test

Adding user test1 to group test

gpasswd -a test2 test

Adding user test2 to group test

gpasswd test

Changing the password for group test

New Password:x9q.Rt/y

Re-enter new password:x9q.Rt/y

To change groups, use the “newgrp test” command. You will be asked for the pass-
word only if you are not a member of the group in question.

14.1 A new file is assigned to your current primary group. You can’t assign a
file to a group that you are not a member of—unless you are root.

14.3 This is the SUID or SGID bit. The bits cause a process to assume the
UID/GID of the executable file rather than that of the executing user. You can
see the bits using “ls -l”. Of course you may change all the permissions on your
own files. However, at least the SUID bit only makes sense on binary executable
files, not shell scripts and the like.

14.4 One of the two following (equivalent) commands will serve:

$ umask 007

$ umask -S u=rwx,g=rwx

You may perhaps ask yourself why this umask contains x bits. They are indeed
irrelevant for files, as files are not created executable by default. However it might
be the case that subdirectories are desired in the project directory, and it makes
sense to endow these with permissions that allow them to be used reasonably.

14.5 The so-called “sticky bit” on a directory implies that only the owner of a
file (or the owner of the directory) may delete or rename it. You will find it, e. g.,
on the /tmp directory.

14.7 This doesn’t work with the bash shell (at least not without further trickery).
We can’t speak for other shells here.

15.2 1022 (= 232−22 − 2). A useful tool for this sort of calculation—if you prefer
not to do them in your head—is called ipcalc.

Copyright © 2012 Linup Front GmbH

B
Example Files

In various places, the fairy tale The Frog King, more exactly The Frog King, or Iron
Henry, from German Children’s and Domestic Fairy Tales by the brothers Grimm, is
used as an example. The fairy tale is presented here in its entirety to allow for
comparisons with the examples.

The Frog King, or Iron Henry

In olden times when wishing still helped one, there lived a king whose

daughters were all beautiful, but the youngest was so beautiful that

the sun itself, which has seen so much, was astonished whenever it

shone in her face.

Close by the king's castle lay a great dark forest, and under an old

lime-tree in the forest was a well, and when the day was very warm,

the king's child went out into the forest and sat down by the side of

the cool fountain, and when she was bored she took a golden ball, and

threw it up on high and caught it, and this ball was her favorite

plaything.

Now it so happened that on one occasion the princess's golden ball did

not fall into the little hand which she was holding up for it, but on

to the ground beyond, and rolled straight into the water. The king's

daughter followed it with her eyes, but it vanished, and the well was

deep, so deep that the bottom could not be seen. At this she began to

cry, and cried louder and louder, and could not be comforted.

And as she thus lamented someone said to her, »What ails you, king's

daughter? You weep so that even a stone would show pity.«

She looked round to the side from whence the voice came, and saw a

frog stretching forth its big, ugly head from the water. »Ah, old

water-splasher, is it you,« she said, »I am weeping for my golden

ball, which has fallen into the well.«

»Be quiet, and do not weep,« answered the frog, »I can help you, but

what will you give me if I bring your plaything up again?«

»Whatever you will have, dear frog,« said she, »My clothes, my pearls

and jewels, and even the golden crown which I am wearing.«

grd1-beispiele.tex ()

224 B Example Files

The frog answered, »I do not care for your clothes, your pearls and

jewels, nor for your golden crown, but if you will love me and let me

be your companion and play-fellow, and sit by you at your little

table, and eat off your little golden plate, and drink out of your

little cup, and sleep in your little bed - if you will promise me this

I will go down below, and bring you your golden ball up again.«

»Oh yes,« said she, »I promise you all you wish, if you will but bring

me my ball back again.« But she thought, »How the silly frog does

talk. All he does is to sit in the water with the other frogs, and

croak. He can be no companion to any human being.«

But the frog when he had received this promise, put his head into the

water and sank down; and in a short while came swimming up again with

the ball in his mouth, and threw it on the grass. The king's daughter

was delighted to see her pretty plaything once more, and picked it up,

and ran away with it.

»Wait, wait,« said the frog. »Take me with you. I can't run as you

can.« But what did it avail him to scream his croak, croak, after her,

as loudly as he could. She did not listen to it, but ran home and soon

forgot the poor frog, who was forced to go back into his well again.

The next day when she had seated herself at table with the king and

all the courtiers, and was eating from her little golden plate,

something came creeping splish splash, splish splash, up the marble

staircase, and when it had got to the top, it knocked at the door and

cried, »Princess, youngest princess, open the door for me.«

She ran to see who was outside, but when she opened the door, there

sat the frog in front of it. Then she slammed the door to, in great

haste, sat down to dinner again, and was quite frightened.

The king saw plainly that her heart was beating violently, and said,

»My child, what are you so afraid of? Is there perchance a giant

outside who wants to carry you away?«

»Ah, no,« replied she. »It is no giant but a disgusting frog.«

»What does that frog want from you?«

»Yesterday as I was in the forest sitting by the well, playing, my

golden ball fell into the water. And because I cried so, the frog

brought it out again for me, and because he so insisted, I promised

him he should be my companion, but I never thought he would be able to

come out of his water. And now he is outside there, and wants to come

in to me.«

In the meantime it knocked a second time, and cried, »Princess,

youngest princess, open the door for me, do you not know what you said

to me yesterday by the cool waters of the well. Princess, youngest

princess, open the door for me.«

Then said the king, »That which you have promised must you perform.

Go and let him in.«

She went and opened the door, and the frog hopped in and followed her,

step by step, to her chair. There he sat and cried, »Lift me up beside

Copyright © 2012 Linup Front GmbH

B Example Files 225

you.« She delayed, until at last the king commanded her to do it. Once

the frog was on the chair he wanted to be on the table, and when he

was on the table he said, »Now, push your little golden plate nearer

to me that we may eat together.« The frog enjoyed what he ate, but

almost every mouthful she took choked her.

At length he said, »I have eaten and am satisfied, now I am tired,

carry me into your little room and make your little silken bed ready,

and we will both lie down and go to sleep.« The king's daughter began

to cry, for she was afraid of the cold frog which she did not like to

touch, and which was now to sleep in her pretty, clean little bed.

But the king grew angry and said, »He who helped you when you were in

trouble ought not afterwards to be despised by you.«

So she took hold of the frog with two fingers, carried him upstairs,

and put him in a corner, but when she was in bed he crept to her and

said, »I am tired, I want to sleep as well as you, lift me up or I

will tell your father.«

At this she was terribly angry, and took him up and threw him with all

her might against the wall. »Now, will you be quiet, odious frog,«

said she. But when he fell down he was no frog but a king's son with

kind and beautiful eyes. He by her father's will was now her dear

companion and husband. Then he told her how he had been bewitched by a

wicked witch, and how no one could have delivered him from the well

but herself, and that to-morrow they would go together into his

kingdom.

And indeed, the next morning a carriage came driving up with eight

white horses, which had white ostrich feathers on their heads, and

were harnessed with golden chains, and behind stood the young king's

servant Faithful Henry.

Faithful Henry had been so unhappy when his master was changed into a

frog, that he had caused three iron bands to be laid round his heart,

lest it should burst with grief and sadness. The carriage was to

conduct the young king into his kingdom. Faithful Henry helped them

both in, and placed himself behind again, and was full of joy because

of this deliverance.

And when they had driven a part of the way the king's son heard a

cracking behind him as if something had broken. So he turned round and

cried, »Henry, the carriage is breaking.« »No, master, it is not the

carriage. It is a band from my heart, which was put there in my great

pain when you were a frog and imprisoned in the well.«

Again and once again while they were on their way something cracked,

and each time the king's son thought the carriage was breaking, but it

was only the bands which were springing from the heart of Faithful

Henry because his master was set free and was happy.

(Linup Front GmbH would like to point out that the authors strongly disap-
prove of any cruelty to animals.)

Copyright © 2012 Linup Front GmbH

C
Linux Essentials Certification

The Linux Professional Institute (LPI) is a vendor-independent non-profit organi-
zation dedicated to furthering the professional use of Linux. One aspect of the
LPI’s work concerns the creation and delivery of distribution-independent certi-
fication exams, for example for Linux professionals. These exams are available
world-wide and enjoy considerable respect among Linux professionals and em-
ployers.

This training manual serves as an aid in preparing for the Linux Essentials exam.
On its web site, the LPI explains:

The purpose of the Linux Essentials Certificate is to define the basic
knowledge required to competently use a desktop or mobile device
using a Linux Operating System. The associated Linux Essentials Pro-
gram will guide and encourage youth (and those new to Linux and
Open Source) to understand the place of Linux and Open Source in
the context of the broader IT industry.

The LPI has compiled the knowledge necessary to pass the exam in the form of a
list of exam objectives which are published on its web site at http://www.lpi.org/. exam objectives

The following table shows which chapters in the manual cover the content of
which exam objectives. The exam objectives themselves are listed later in this
appendix. Do note that the Linux Essentials objectives are not suitable or intended
as a guideline for the didactic delivery of an introductory class to Linux. For this
reason, this manual does not follow the order of objectives in the LPI list, but
deviates from them in the interest of a logical sequence of topics aimed at making
the material more understandable.

A Be aware that the exam objectives on the LPI web site may be modified occa-
sionally, and that, e. g., supplementary information may appear there that
has not yet been incorporated into this training manual. For safety, refer to
the LPI’s version of the exam objectives.

C.1 Exam Objective Overview

The following table shows the objectives for the Linux Essentials exam and the
chapters covering these objectives. The numbers in the right-hand column refer
to the chapters containing the material in question.

lxes-objs-Essentials.tex ()

228 C Linux Essentials Certification

No Wt Title LXES
1.1 2 Linux Evolution and Popular Operating Systems 2
1.2 2 Major Open Source Applications 2
1.3 1 Understanding Open Source Software and Licensing 2
1.4 2 ICT Skills and Working in Linux 2–3, 13
2.1 2 Command Line Basics 4, 6, 9
2.2 2 Using the Command Line to Get Help 5
2.3 2 Using Directories and Listing Files 6
2.4 2 Creating, Moving and Deleting Files 6
3.1 2 Archiving Files on the Command Line 11
3.2 4 Searching and Extracting Data from Files 7–8
3.3 4 Turning Commands into a Script 3, 9
4.1 1 Choosing an Operating System 1–2
4.2 2 Understanding Computer Hardware 1
4.3 3 Where Data is Stored 10
4.4 2 Your Computer on the Network 15
5.1 2 Basic Security and Identifying User Types 10, 13
5.2 2 Creating Users and Groups 13
5.3 2 Managing File Permissions and Ownership 14
5.4 1 Special Directories and Files 6, 10, 14

C.2 Exam Objectives For Linux Essentials

1.1 Linux Evolution and Popular Operating Systems

Weight 2
Description Knowledge of Linux development and major distributions.
Key Knowledge Areas

• Open Source Philosophy
• Distributions
• Embedded Systems

The following is a partial list of the used files, terms and utilities:

• Android
• Debian
• CentOS

1.2 Major Open Source Applications

Weight 2
Description Awareness of major applications and their uses.
Key Knowledge Areas

• Desktop Applications
• Server Applications
• Mobile Applications
• Development Languages
• Package Management Tools and repositories

The following is a partial list of the used files, terms and utilities:

• OpenOffice.org, LibreOffice, Thunderbird, Firefox
• Blender, Gimp, Audacity, ImageMagick
• Apache, MySQL, PostgreSQL
• NFS, Samba, OpenLDAP, Postfix, DNS, DHCP
• C, Java, Perl, shell, Python, PHP

Copyright © 2012 Linup Front GmbH

C Linux Essentials Certification 229

1.3 Understanding Open Source Software and Licensing

Weight 1
Description Open communities and licensing Open Source Software for busi-
ness.
Key Knowledge Areas

• Licensing
• Free Software Foundation (FSF), Open Source Initiative (OSI)

The following is a partial list of the used files, terms and utilities:

• GPL, BSD, Creative Commons
• Free Software, Open Source Software, FOSS, FLOSS
• Open Source business models

Nice to know:

• Intellectual Property (IP): copyright, trademarks and patents
• Apache License, Mozilla License

1.4 ICT Skills and Working in Linux

Weight 2 Description Basic Information and Communication Technology
(ICT) skills and working in Linux.
Key Knowledge Areas

• Desktop Skills
• Getting to the Command Line
• Industry uses of Linux, Cloud Computing and Virtualization

The following is a partial list of the used files, terms and utilities:

• Using a browser, privacy concerns, configuration options, searching the
web and saving content

• Terminal and Console
• Password issues
• Privacy issues and tools
• Use of common open source applications in presentations and projects

2.1 Command Line Basics

Weight 2
Description Basics of using the Linux command line.
Key Knowledge Areas

• Basic shell
• Formatting commands
• Working With Options
• Variables
• Globbing
• Quoting

The following is a partial list of the used files, terms and utilities:

• echo

• history

• PATH env variable

Copyright © 2012 Linup Front GmbH

230 C Linux Essentials Certification

• export

• which

Nice to know:

• Substitutions
• ||, && and ; control operators

2.2 Using the Command Line to Get Help

Weight 2
Description Running help commands and navigation of the various help sys-
tems.
Key Knowledge Areas

• Man
• Info

The following is a partial list of the used files, terms and utilities:

• man

• info

• Man pages
• /usr/share/doc

• locate

Nice to know:

• apropos, whatis, whereis

2.3 Using Directories and Listing Files

Weight 2
Description Navigation of home and system directories and listing files in var-
ious locations.
Key Knowledge Areas

• Files, directories
• Hidden files and directories
• Home
• Absolute and relative paths

The following is a partial list of the used files, terms and utilities:

• Common options for ls

• Recursive listings
• cd

• . and ..

• home and ~

2.4 Creating, Moving and Deleting Files

Weight 2
Description Create, move and delete files and directories under the home direc-
tory.
Key Knowledge Areas

• Files and directories

Copyright © 2012 Linup Front GmbH

C Linux Essentials Certification 231

• Case sensitivity
• Simple globbing and quoting

The following is a partial list of the used files, terms and utilities:

• mv, cp, rm, touch
• mkdir, rmdir

3.1 Archiving Files on the Command Line

Weight 2
Description Archiving files in the user home directory.
Key Knowledge Areas

• Files, directories
• Archives, compression

The following is a partial list of the used files, terms and utilities:

• tar

• Common tar options
• gzip, bzip2
• zip, unzip

Nice to know:

• Extracting individual files from archives

3.2 Searching and Extracting Data from Files

Weight 4
Description Search and extract data from files in the home directory.
Key Knowledge Areas

• Command line pipes
• I/O re-direction
• Partial POSIX Regular Expressions (., [], *, ?)

The following is a partial list of the used files, terms and utilities:

• find

• grep

• less

• cat, head, tail
• sort

• cut

• wc

Nice to know:

• Partial POSIX Basic Regular Expressions ([^], ^, $)
• Partial POSIX Extended Regular Expressions (+, (), |)
• xargs

3.3 Turning Commands into a Script

Weight 4
Description Turning repetitive commands into simple scripts.
Key Knowledge Areas

Copyright © 2012 Linup Front GmbH

232 C Linux Essentials Certification

• Basic text editing
• Basic shell scripting

The following is a partial list of the used files, terms and utilities:

• /bin/sh

• Variables
• Arguments
• for loops
• echo

• Exit status
• names of common text editors

Nice to know:

• use of pico, nano, vi (only basics for creating scripts)
• Bash
• if, while, case statements
• read and test, and [commands

4.1 Choosing an Operating System

Weight 1
Description Knowledge of major operating systems and Linux distributions.
Key Knowledge Areas

• Windows, Mac, Linux differences
• Distribution life cycle management

The following is a partial list of the used files, terms and utilities:

• GUI versus command line, desktop configuration
• Maintenance cycles, Beta and Stable

4.2 Understanding Computer Hardware

Weight 2
Description Familiarity with the components that go into building desktop and
server computers.
Key Knowledge Areas

• Hardware

The following is a partial list of the used files, terms and utilities:

• Hard drives and partitions, motherboards, processors, power supplies, op-
tical drives, peripherals

• Display types
• Drivers

4.3 Where Data is Stored

Weight 3
Description Where various types of information are stored on a Linux system.
Key Knowledge Areas

• Kernel
• Processes

Copyright © 2012 Linup Front GmbH

C Linux Essentials Certification 233

• syslog, klog, dmesg
• /lib, /usr/lib, /etc, /var/log

The following is a partial list of the used files, terms and utilities:

• Programs, libraries, packages and package databases, system configuration
• Processes and process tables, memory addresses, system messaging and

logging
• ps, top, free

4.4 Your Computer on the Network

Weight 2
Description Querying vital networking settings and determining the basic re-
quirements for a computer on a Local Area Network (LAN).
Key Knowledge Areas

• Internet, network, routers
• Domain Name Service
• Network configuration

The following is a partial list of the used files, terms and utilities:

• route

• resolv.conf

• IPv4, IPv6
• ifconfig

• netstat

• ping

Nice to know:

• ssh

• dig

5.1 Basic Security and Identifying User Types

Weight 2
Description Various types of users on a Linux system.
Key Knowledge Areas

• Root and Standard Users
• System users

The following is a partial list of the used files, terms and utilities:

• /etc/passwd, /etc/group
• id, who, w
• sudo

Nice to know:

• su

5.2 Creating Users and Groups

Weight 2
Description Creating users and groups on a Linux system.
Key Knowledge Areas

Copyright © 2012 Linup Front GmbH

234 C Linux Essentials Certification

• User and group commands
• User IDs

The following is a partial list of the used files, terms and utilities:

• /etc/passwd, /etc/shadow, /etc/group
• id, last
• useradd, groupadd
• passwd

Nice to know:

• usermod, userdel
• groupmod, groupdel

5.3 Managing File Permissions and Ownership

Weight 2
Description Understanding and manipulating file permissions and ownership
settings.
Key Knowledge Areas

• File/directory permissions and owners

The following is a partial list of the used files, terms and utilities:

• ls -l

• chmod, chown

Nice to know:

• chgrp

5.4 Special Directories and Files

Weight 1
Description Special directories and files on a Linux system including special
permissions.
Key Knowledge Areas

• System files, libraries
• Symbolic links

The following is a partial list of the used files, terms and utilities:

• /etc, /var
• /tmp, /var/tmp and Sticky Bit
• ls -d

• ln -s

Nice to know:

• Hard links
• Setuid/Setgid

Copyright © 2012 Linup Front GmbH

D
Command Index

This appendix summarises all commands explained in the manual and points to
their documentation as well as the places in the text where the commands have
been introduced.

. Reads a file containing shell commands as if they had been entered on
the command line bash(1) 127

adduser Convenient command to create new user accounts (Debian)
adduser(8) 181

apropos Shows all manual pages whose NAME sections contain a given keyword
apropos(1) 67

bash The “Bourne-Again-Shell”, an interactive command interpreter
bash(1) 58

bunzip2 File decompression program for .bz2 files bzip2(1) 152
bzip2 File compression program bzip2(1) 147
cat Concatenates files (among other things) cat(1) 108
cd Changes a shell’s current working directory bash(1) 75
chfn Allows users to change the GECOS field in the user database

chfn(1) 175
chgrp Sets the assigned group of a file or directory chgrp(1) 190
chmod Sets access modes for files and directories chmod(1) 189
chown Sets the owner and/or assigned group of a file or directory

chown(1) 190
convmv Converts file names between character encodings convmv(1) 72
cp Copies files cp(1) 82
cut Extracts fields or columns from its input cut(1) 114
date Displays the date and time date(1) 120, 61
dig Searches DNS for information (very convenient) dig(1) 206
dmesg Outputs the content of the kernel message buffer dmesg(8) 141
dpkg Debian GNU/Linux package management tool dpkg(8) 166
echo Writes all its parameters to standard output, separated by spaces

bash(1), echo(1) 61
egrep Searches files for lines matching specific regular expressions; extended

regular expressions are allowed grep(1) 97
env Outputs the process environment, or starts programs with an adjusted

environment env(1) 122
export Defines and manages environment variables bash(1) 121
fgrep Searches files for lines with specific content; no regular expressions al-

lowed fgrep(1) 97
file Guesses the type of a file’s content, according to rules file(1) 134
find Searches files matching certain given criteria find(1), Info: find 87

Copyright © 2012 Linup Front GmbH

236 D Command Index

free Displays main memory and swap space usage free(1) 140, 162
gpasswd Allows a group administrator to change a group’s membership and up-

date the group password gpasswd(1) 185
grep Searches files for lines matching a given regular expression grep(1) 97
groff Sophisticated typesetting program groff(1) 65, 67
groupadd Adds user groups to the system group database groupadd(8) 185
groupdel Deletes groups from the system group database groupdel(8) 185
groupmod Changes group entries in the system group database groupmod(8) 185
groups Displays the groups that a user is a member of groups(1) 172
gzip File compression utility gzip(1) 147
hash Shows and manages ”‘seen”’ commands in bash bash(1) 123
head Displays the beginning of a file head(1) 108
help Displays on-line help for bash commands bash(1) 61, 64
id Displays a user’s UID and GIDs id(1) 172
ifconfig Configures network interfaces ifconfig(8) 203, 204
info Displays GNU Info pages on a character-based terminal info(1) 67
klogd Accepts kernel log messages klogd(8) 141
last List recently-logged-in users last(1) 172
less Displays texts (such as manual pages) by page less(1) 66, 87
ln Creates (“hard” or symbolic) links ln(1) 84
locate Finds files by name in a file name database locate(1) 91
logout Terminates a shell session bash(1) 49
ls Lists file information or directory contents ls(1) 75
man Displays system manual pages man(1) 64
manpath Determines the search path for system manual pages manpath(1) 65
mkdir Creates new directories mkdir(1) 77
mkfifo Creates FIFOs (named pipes) mkfifo(1) 135
mknod Creates device files mknod(1) 135
more Displays text data by page more(1) 87
mv Moves files to different directories or renames them mv(1) 83
netstat Displays information about network connections, servers, routing

netstat(8) 208
paste Joins lines from different input files paste(1) 115
pico Very simple text editor from the PINE/Alpine package pico(1) 52
ping Checks basic network connectivity using ICMP ping(8) 205
ping6 Checks basic network connectivity (for IPv6) ping(8) 206
ps Outputs process status information ps(1) 161
pwd Displays the name of the current working directory pwd(1), bash(1) 75
reset Resets a terminal’s character set to a “reasonable” value tset(1) 108
rm Removes files or directories rm(1) 83
rmdir Removes (empty) directories rmdir(1) 78
route Manages the Linux kernel’s static routing table route(8) 203
rpm Package management tool used by various Linux distributions (Red Hat,

SUSE, …) rpm(8) 166
set Manages shell variables and options bash(1) 122
slocate Searches file by name in a file name database, taking file permissions into

account slocate(1) 92
sort Sorts its input by line sort(1) 109
source Reads a file containing shell commands as if they had been entered on

the command line bash(1) 127
split Splits a file into pieces up to a given maximum size split(1) 147
su Starts a shell using a different user’s identity su(1) 158
sudo Allows normal users to execute certain commands with administrator

privileges sudo(8) 159
syslogd Handles system log messages syslogd(8) 141
tail Displays a file’s end tail(1) 108
tar File archive manager tar(1) 146

Copyright © 2012 Linup Front GmbH

D Command Index 237

test Evaluates logical expressions on the command line
test(1), bash(1) 129

top Screen-oriented tool for process monitoring and control top(1) 162
type Determines the type of command (internal, external, alias) bash(1) 61
uniq Replaces sequences of identical lines in its input by single specimens

uniq(1) 113
unset Deletes shell or environment variables bash(1) 122
unzip Decompression software for (Windows-style) ZIP archives

unzip(1) 153
updatedb Creates the file name database for locate updatedb(1) 91
uptime Outputs the time since the last system boot as well as the system load

averages uptime(1) 139
useradd Adds new user accounts useradd(8) 180
userdel Removes user accounts userdel(8) 183
usermod Modifies the user database usermod(8) 183
vigr Allows editing /etc/group or /etc/gshadow with “file locking”, to avoid con-

flicts vipw(8) 185
whatis Locates manual pages with a given keyword in its description

whatis(1) 67
whereis Searches executable programs, manual pages, and source code for given

programs whereis(1) 123
which Searches programs along PATH which(1) 123
xargs Constructs command lines from its standard input

xargs(1), Info: find 90
zip Archival and compression software like PKZIP zip(1) 152

Copyright © 2012 Linup Front GmbH

Index

This index points to the most important key words in this document. Particu-
larly important places for the individual key words are emphasised by bold type.
Sorting takes place according to letters only; “~/.bashrc” is therefore placed under
“B”.

., 74

., 127

.., 74

./, 149
/, 142

access mode, 188
adduser, 181
Adler, Mark, 149
Aiken, Howard, 14–15
alias, 61, 212
Android, 19, 39, 44
Apple, 20–21
applications, 20
apropos, 67
Aptitude, 166
AT&T, 26
awk, 115

bash, 40, 58–59, 62, 64, 69, 75, 99,
103–104, 121–123, 125, 127,
129, 131–132, 194, 218, 222,
236

-c (option), 126
~/.bash_history, 125
Berkeley, 26
/bin, 61, 136–137, 139
/bin/ls, 123
/bin/sh, 220
/bin/true, 175
block devices, 137
/boot, 135–136
Bourne, Stephen L., 58
BSD, 26
bunzip2, 152
bzip, 151
bzip2, 146–147, 151–152, 155

-1 (option), 151
-9 (option), 151
-c (option), 151
-d (option), 151–152

Canonical Ltd., 43
cat, 105, 108, 134, 147
cd, 61, 74–75, 93, 188, 212
CentOS, 41
chage, 182–183
character devices, 137
chfn, 175
chgrp, 185, 190–191, 193

-R (option), 191
chmod, 88, 127, 189, 192–193

-R (option), 190
--reference=⟨name⟩ (option), 190

chown, 184, 190–191
-R (option), 191

chsh, 175
COMMAND, 161
command substitution, 104
compress, 147, 149–150
convmv, 72
cp, 82–84, 219

-i (option), 82
cpio, 150, 152
cron, 92
crontab, 124, 218
cut, 114–115, 217

-c (option), 114–115
-d (option), 115
-f (option), 115
--output-delimiter (option), 115
-s (option), 115

date, 61, 120–121
dd, 137
Debian project, 42
definitions, 12
demand paging, 194
/dev, 137, 219
/dev/fd0, 135
/dev/null, 137, 142, 219
/dev/random, 137
/dev/tty, 103

Copyright © 2012 Linup Front GmbH

240 Index

/dev/urandom, 137
/dev/zero, 137
dig, 206–209

+short (option), 207
+trace (option), 209
-x (option), 207

dirs, 75
Disney, Walt, 36
distribution, 40
DistroWatch, 40
dmesg, 141
dpkg, 166

--list (option), 166

echo, 61, 79, 109, 120, 212, 217
-n (option), 120

Eclipse, 39
EDITOR (environment variable), 184
egrep, 97–98, 215–216
emacs, 97
env, 122
environment variable

EDITOR, 184
LANG, 109–110
LC_ALL, 109–110
LC_COLLATE, 109–110
LOGNAME, 215
MANPATH, 65
PATH, 74, 122–124, 127, 131, 218,

220, 237
TERM, 87
TZ, 120
VISUAL, 184

environment variables, 121
/etc, 138, 159–160
/etc/cron.daily, 92
/etc/fstab, 138, 143, 159
/etc/group, 173, 175, 178–180, 183–185
/etc/gshadow, 178–179, 184–186, 237
/etc/hosts, 138
/etc/init.d/*, 138
/etc/inittab, 138
/etc/issue, 138
/etc/magic, 134
/etc/motd, 138
/etc/mtab, 138, 140
/etc/network/interfaces, 203
/etc/passwd, 99, 106, 116, 138, 159,

173–176, 178–181, 183–184,
221

/etc/rc.d/init.d, 138
/etc/resolv.conf, 204, 207
/etc/services, 208
/etc/shadow, 92, 138, 174, 176–178, 180,

182–184, 186, 192, 215, 221
/etc/shells, 175
/etc/skel, 180
/etc/sysconfig/locate, 92
/etc/sysconfig/network, 203

/etc/updatedb.conf, 92
Ewing, Larry, 26
Ewing, Marc, 40
exam objectives, 227
exit, 59, 61, 126
export, 121–122

-n (option), 122

Fedora, 41
fgrep, 97–98, 124
FHS, 135
file, 134
find, 87–91, 215

-exec (option), 90
-maxdepth (option), 214
-name (option), 215
-ok (option), 90
-print (option), 88, 90
-print0 (option), 90

finger, 175
firmware, 19
Fox, Brian, 58
Freax, 26
free, 140, 162, 164

-h (option), 162
--si (option), 162

freeware, 34
frog.txt, 98

Gailly, Jean-loup, 149
Gates, Bill, 30
gcc, 72
GNOME, 49
GNU Emacs, 39
Google, 21, 39
gpasswd, 185

-A (option), 185
-a (option), 185
-d (option), 185

grep, 65, 97–99, 102, 107–108, 114, 136,
142, 164, 215, 219

--color (option), 99
-f (option), 98
-H (option), 219

groff, 65, 67
group, 171

administrative, 179
administrator, 185
password, 178–179, 185

groupadd, 185
-g (option), 185

groupdel, 185
groupmod, 183, 185

-g (option), 185
-n (option), 185

groups, 172
gunzip, 150, 152
gzip, 146–147, 149–152, 155, 219

-1 (option), 150

Copyright © 2012 Linup Front GmbH

Index 241

-6 (option), 150
-9 (option), 150
--best (option), 150
-c (option), 150
-d (option), 150–151
--fast (option), 150
-l (option), 150
-r (option), 150
-S (option), 150–151
-v (option), 150

hash, 123
-r (option), 123

head, 108–109
-c (option), 109
-n (option), 108
-𝑛 (option), 108

help, 61, 64, 123
/home, 86, 141–142, 148, 175–176
home directory, 171

-i, 213
id, 172, 174, 194

-G (option), 172
-g (option), 172
-Gn (option), 172
-n (option), 172
-u (option), 172

ifconfig, 203–205, 210
-a (option), 205

info, 67
init, 138
inode numbers, 84
ipcalc, 222

Katz, Phil, 149
KDE, 49
kernel modules, 137
klogd, 141
Knoppix, 43
konsole, 175
Korn, David, 58
Krafft, Martin F., 42

LANG (environment variable), 109–110
last, 172–173
LC_ALL (environment variable), 109–110
LC_COLLATE (environment variable),

109–110
Lemmke, Ari, 26
less, 66, 87, 103, 106
Lessig, Lawrence (Larry), 36
/lib, 137
/lib/modules, 137
Linux, 14, 21
linux-0.01.tar.gz, 211
ln, 84–86, 135

-b (option), 86
-f (option), 86

-i (option), 86
-s (option), 86, 135
-v (option), 86

locate, 91–93, 215, 237
-e (option), 91

login, 175
LOGNAME (environment variable), 215
logout, 49
lost+found, 142
ls, 67, 75–77, 79, 81, 84, 104–105, 107,

114, 123, 136, 160, 174,
188–189, 212–213, 216

-a (option), 76
-d (option), 77, 212
-F (option), 76
-i (option), 84
-l (option), 76–77, 174, 189
-p (option), 76
-U (option), 105

LXDE, 50

Macintosh, 20
mail, 175
man, 64–67, 80, 87, 140, 160

-a (option), 66
-f (option), 67
-k (option), 67

MANPATH (environment variable), 65
manpath, 65
/media, 141
/media/cdrom, 141
/media/dvd, 141
/media/floppy, 141
Microsoft, 19–20
mkdir, 77–78, 134–136

-p (option), 77
mkfifo, 135
mknod, 135
/mnt, 141
more, 87

-l (option), 87
-n ⟨number⟩ (option), 87
-s (option), 87

mount, 124, 136
MS-DOS, 20
Murdock, Ian, 42
mv, 83–85, 213, 219

-b (option), 83
-f (option), 83
-i (option), 83
-R (option), 84, 213
-u (option), 83
-v (option), 83

netstat, 208–209
-r (option), 209
-s (option), 209

newgrp, 178–179
nobody, 92

Copyright © 2012 Linup Front GmbH

242 Index

O’Reilly, Tim, 30
Olsen, Ken, 14
operating system, 19
/opt, 138–139, 142
OS X, 19, 21

PackageKit, 166
passwd, 174, 181–185, 191–192, 221

-l (option), 182
-S (option), 182
-u (option), 182

passwd -m, 182
passwd -w, 182
passwd -x, 182
passwords, 171, 174, 176

changing, 182
group —, 178–179, 185
setting up, 181
shadow –, 174
shadow —, 176

paste, 115–116
-d (option), 115
-s (option), 116

PATH (environment variable), 74,
122–124, 127, 131, 218, 220,
237

PDP-11, 14
Perens, Bruce, 30
Perl, 96
perl, 115
Pesis, Jeff, 19
pico, 52
ping, 205–206, 209

-f (option), 206
ping6, 206
pipeline, 106
pipes, 106
popd, 75
primary group, 174
/proc, 139–140, 142, 162
/proc/cpuinfo, 139
/proc/devices, 139
/proc/dma, 139
/proc/interrupts, 139
/proc/ioports, 139
/proc/kcore, 139, 219
/proc/loadavg, 139
/proc/meminfo, 140
/proc/mounts, 140
/proc/scsi, 140
ps, 140, 161–162, 164, 167, 191

ax (option), 164
l (option), 161
-u (option), 191

pseudo devices, 137
pseudo-users, 173
Puppet, 160
pushd, 75
pwd, 75, 93

Python, 96

Ramey, Chet, 58
rar, 146
Raymond, Eric S., 30
Red Hat, 40
Red Hat Enterprise Linux, 40
reference counter, 84
reset, 108
return value, 125
Ritchie, Dennis, 26, 192
rm, 61, 83–84, 86, 90, 188, 212–213

-f (option), 84
-i (option), 83–84, 213
-r (option), 84
-v (option), 84

rmdir, 78, 212
-p (option), 78

/root, 135, 141
root directory, 135
route, 203, 206, 209–210
rpm, 166

Salt, 160
/sbin, 136–137, 139
/sbin/init, 161
Scientific Linux, 41
set, 122
Seward, Julian, 151
shell script, 127
shell variables, 121
Shuttleworth, Mark, 43
SkoleLinux, 43
sleep, 164
slocate, 92, 215
sort, 107, 109–111, 113–114, 117, 124,

129, 141, 217
-b (option), 111–112
-k (option), 110
-n (option), 113
-r (option), 112
-t (option), 112
-u (option), 242

-u, 114
source, 127
split, 147
/srv, 141
ssh, 172
Stallman, Richard M., 30, 32
standard channels, 102
su, 158–159, 166, 173, 220–221
sudo, 159, 166, 220

-i (option), 159
SUSE, 41
symbolic links, 85
Synaptic, 166
/sys, 140
syslogd, 140–141

Copyright © 2012 Linup Front GmbH

Index 243

tail, 108–109, 217
-c (option), 109
-f (option), 109
-n (option), 108
-𝑛 (option), 108

Tanenbaum, Andrew S., 26, 28
tar, 146–152, 155, 219

-c (option), 147–148
-f (option), 147–148
-j (option), 147
-M (option), 147
-r (option), 147
-t (option), 147–148
-u (option), 147
-v (option), 147–148
-x (option), 147–148
-Z (option), 147
-z (option), 147, 219

Tcl, 96
tee, 106–107, 217

-a (option), 106
TERM (environment variable), 87
test, 61, 129, 212

-f (option), 218
Thawte, 43
Thompson, Ken, 26
/tmp, 141, 143, 184, 193, 221
top, 162, 164, 167
Torvalds, Linus, 14, 21, 26, 28, 34
touch, 184
type, 61, 123
TZ (environment variable), 120

Ubuntu, 43
UID, 171
umask, 194
uname, 172

-r (option), 172
uniq, 113
Unix, 14, 21, 26
unset, 122
unzip, 152–155, 219

-d (option), 153
-h (option), 154
-hh (option), 154
-v (option), 153–154
-x (option), 154

updatedb, 91–92, 215
uptime, 139
user accounts, 170
user database, 173, 176

stored elsewhere, 176
user name, 171
User-level programs, 20
useradd, 180–181, 183–185, 221
userdel, 183, 185

-r (option), 183
usermod, 183, 185, 221
/usr, 135, 138–139

/usr/bin, 61, 135, 139
/usr/lib, 139
/usr/local, 139, 141
/usr/local/bin, 135
/usr/sbin, 139
/usr/share, 139
/usr/share/dict/words, 99–100
/usr/share/doc, 139
/usr/share/doc/ifupdown/examples/network-

interfaces.gz, 203
/usr/share/file, 134
/usr/share/file/magic, 134
/usr/share/info, 139
/usr/share/man, 65, 139
/usr/share/zoneinfo, 120
/usr/src, 139
utilities, 20

/var, 140–141, 143
/var/cache/apt, 166
/var/lib/dpkg, 166
/var/lib/rpm, 166
/var/log, 140
/var/mail, 86, 140, 183
/var/spool, 143
/var/spool/cron, 140
/var/spool/cups, 140
/var/tmp, 141, 143
Verisign, 43
vi, 39, 52, 184
vigr, 184–185

-s (option), 185
vim, 54, 97
vimtutor, 54
vipw, 184–185, 221

-s (option), 184
VISUAL (environment variable), 184
vmlinuz, 136
Volkerding, Patrick, 41
von Neumann, John, 15

Watson, Thomas J., 14
wc, 105, 129, 218

-l (option), 129
whatis, 67
whereis, 123, 218
which, 123, 218
Windows, 19–21

Xandros, 43
xargs, 90

-0 (option), 90
-r (option), 90

XFCE, 50
xterm, 124, 175

YaST, 42, 166
Young, Bob, 40
YUM, 166

Copyright © 2012 Linup Front GmbH

244 Index

.zip, 152–153
zip, 146, 152–155

-@ (option), 152
-0 (option), 152
-d (option), 153
-f (option), 153
-FS (option), 153
-h (option), 153
-h2 (option), 153
-r (option), 152–153
-u (option), 153

zsh, 181
Zypper, 166

Copyright © 2012 Linup Front GmbH

	Contents
	List of Tables
	List of Figures
	Preface
	Computers, Software and Operating Systems
	What Is A Computer, Anyway?
	Components Of A Computer
	Software
	The Most Important Operating Systems
	Windows And OS X
	Linux
	More Differences And Similarities

	Summary

	Linux and Free Software
	Linux: A Success Story
	Free Or Open Source?
	Copyright And ``Free Software''
	Licences
	The GPL
	Other Licences

	Important Free Software
	Overview
	Office and Productivity Tools
	Graphics and Multimedia Tools
	Internet Services
	Infrastructure Software
	Programming Languages and Development

	Important Linux Distributions
	Overview
	Red Hat
	SUSE
	Debian
	Ubuntu
	Others
	Differences and Similarities

	First Steps with Linux
	Logging In and Out
	Desktop Environment and Browser
	Graphical Desktop Environments
	Browsers
	Terminals and Shells

	Creating and Modifying Text Files

	Who's Afraid Of The Big Bad Shell?
	Why?
	What Is The Shell?

	Commands
	Why Commands?
	Command Structure
	Command Types
	Even More Rules

	Getting Help
	Self-Help
	The *help Command and the *--help Option
	The On-Line Manual
	Overview
	Structure
	Chapters
	Displaying Manual Pages

	Info Pages
	HOWTOs
	Further Information Sources

	Files: Care and Feeding
	File and Path Names
	File Names
	Directories
	Absolute and Relative Path Names

	Directory Commands
	The Current Directory: *cd & Co.
	Listing Files and Directories—*ls
	Creating and Deleting Directories: *mkdir and *rmdir

	File Search Patterns
	Simple Search Patterns
	Character Classes
	Braces

	Handling Files
	Copying, Moving and Deleting—*cp and Friends
	Linking Files—*ln and ln -s
	Displaying File Content—*more and *less
	Searching Files—*find
	Finding Files Quickly—*locate and *slocate

	Regular Expressions
	Regular Expressions: The Basics
	Regular Expressions: Extras

	Searching Files for Text—*grep

	Standard I/O and Filter Commands
	I/O Redirection and Command Pipelines
	Standard Channels
	Redirecting Standard Channels
	Command Pipelines

	Filter Commands
	Reading and Writing Files
	Outputting and Concatenating Text Files—*cat
	Beginning and End—*head and *tail

	Data Management
	Sorted Files—*sort and *uniq
	Columns and Fields—*cut, *paste etc.

	More About The Shell
	Simple Commands: *sleep, *echo, and *date
	Shell Variables and The Environment
	Command Types – Reloaded
	The Shell As A Convenient Tool
	Commands From A File
	The Shell As A Programming Language

	The File System
	Terms
	File Types
	The Linux Directory Tree
	Directory Tree and File Systems

	Archiving and Compressing Files
	Archival and Compression
	Archiving Files Using tar
	Compressing Files with gzip
	Compressing Files with bzip2
	Archiving and Compressing Files Using zip and unzip

	Introduction to System Administration
	System Administration Basics
	System Configuration
	Processes
	Package Management

	User Administration
	Basics
	Why Users?
	Users and Groups
	People and Pseudo-Users

	User and Group Information
	The /etc/passwd File
	The */etc/shadow File
	The */etc/group File
	The */etc/gshadow File

	Managing User Accounts and Group Information
	Creating User Accounts
	The *passwd Command
	Deleting User Accounts
	Changing User Accounts and Group Assignment
	Changing User Information Directly—*vipw
	Creating, Changing and Deleting Groups

	Access Control
	The Linux Access Control System
	Access Control For Files And Directories
	The Basics
	Inspecting and Changing Access Permissions
	Specifying File Owners and Groups—*chown and *chgrp

	Process Ownership
	Special Permissions for Executable Files
	Special Permissions for Directories

	Linux Networking
	Networking Basics
	Introduction and Protocols
	Addressing and Routing
	Names and the DNS
	IPv6

	Linux As A Networking Client
	Requirements
	Troubleshooting

	Sample Solutions
	Example Files
	Linux Essentials Certification
	Exam Objective Overview
	Exam Objectives For Linux Essentials

	Command Index
	Index

